Frequency Inverter DF51...

Hardware and Engineering

04/07 AWB8230-1541GB

We keep power under control.

All brand and product names are trademarks or registered trademarks of the owner concerned.

1st published 2005, edition date 10/05 2nd published 2007, edition date 04/07 completely revised © 2005 by Moeller GmbH, 53105 Bonn

Author: Jörg Randermann Production: Thomas Kracht Translation: Dominik Kreuzer

All rights reserved, including those of the translation.

No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without written permission of Moeller GmbH, Bonn.

Subject to alteration without notice.

Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit the device.
- Cover or enclose any adjacent live components.
- Follow the engineering instructions (AWA) for the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE) must be connected to the protective earth (PE) or the potential equalisation. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference does not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the I/O interface so that an open circuit on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the extra-low voltage of the 24 V supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause a restart.

- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed and with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.
- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergency-stop devices should be implemented.
- Wherever faults in the automation system may cause injury or material damage, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).
- Depending on their degree of protection, frequency inverters may contain live bright metal parts, moving or rotating components or hot surfaces during and immediately after operation.
- Removal of the required covers, improper installation or incorrect operation of motor or frequency inverter may cause the failure of the device and may lead to serious injury or damage.
- The applicable national accident prevention and safety regulations apply to all work carried on live frequency inverters.
- The electrical installation must be carried out in accordance with the relevant regulations (e. g. with regard to cable cross sections, fuses, PE).
- Transport, installation, commissioning and maintenance work must be carried out only by qualified personnel (IEC 60364, HD 384 and national occupational safety regulations).
- Installations containing frequency inverters must be provided with additional monitoring and protective devices in accordance with the applicable safety regulations. Modifications to the frequency inverters using the operating software are permitted.

- All covers and doors must be kept closed during operation.
- To reduce the hazards for people or equipment, the user must include in the machine design measures that restrict the consequences of a malfunction or failure of the drive (increased motor speed or sudden standstill of motor). These measures include:
 - Other independent devices for monitoring safety-related variables (speed, travel, end positions etc.).
 - Electrical or non-electrical system-wide measures (electrical or mechanical interlocks).
 - Never touch live parts or cable connections of the frequency inverter after it has been disconnected from the power supply. Due to the charge in the capacitors, these parts may still be live after disconnection. Fit appropriate warning signs.

Contents

Ab	out this manual		5
		Abbreviations and symbols	5
1	About the DF51 series		7
'	About the DI JI series	Suctom overview	, 7
		System overview	
		Key to part numbers	8
		Rating and nameplate	8
		Inspecting the package content	10
		Layout of the DF51	11
		Features of the frequency inverters	12
		Selection criteria	13
		Proper use	13
		From DF5 to DF51	14
		Service and warranty	14
2	Engineering		15
		Performance features/Technical data	15
		Connection to power supply	19
		EMC compliance	21
		Motor and circuit type	22
		Braking	25
		PID control	26
3	Installation		29
5	Installation	Fitting the DF51	29
		EMC-compliant installation	32
			32
		- Fitting a radio-interference (RFI) filter	
		 EMC measures in the control panel 	33
		– Earthing	34
		- Cable routing	34
		– Screening	34
		Electrical connection	36
		 Connecting the power section 	36
		 Connecting a signalling relay 	42
		 Connecting the control signal terminals 	42
4	Using the DF51		49
		Operational warnings	49
		Block diagram	50
		Initial starting	51
		 Standard operation, actuation with default settings 	52
		 Default functions of output terminals 	54
		Keypad	55
		– Menu overview	56
		 Quick parameter selection 	57
		 Setting the display parameters 	57
		 Examples for changing parameters 	59
		 Reference value and control signal input 	62
			02

5 Setting parameters

	65
Motor data	66
Motor control	67
– U/f characteristic	67
– Limit and target values	68
 Automatic voltage regulation (AVR) Automatic voltage and voltage heart 	69
 Output voltage and voltage boost 	70 71
Reference and control signal inputs	71
 Basic parameters Control signal terminal overview (input) 	75
 Start/Stop signal 	75
 Parameterizable digital inputs 	78
 Controller inhibit and coasting (free run stop – FRS) 	80
 Specifying reference frequencies 	81
 Reference value control (AT) 	87
 Changing over time ramps 	89
 Minimum and maximum operating frequency 	91
 Suppressing frequency ranges 	92
 Fixed frequencies 	93
– Motor potentiometer	94
– Jog mode	96
 Three-wire control (STA – STP – F/R) 	97
 Control signal terminal modus (F-TM) and keypad 	
(OPE)	98
 Second parameter set (SET) 	100
Actual value and status signals	104
 Control signal terminal overview (output) 	104
– Analog output (AM)	106
 Parameterizable digital outputs 	107
 Signalling relay K1 (terminals K11, K12, K14) 	109
– RUN signal	111
 Frequency value signal (FA1/FA2) 	111
Monitoring functions	113
 Limiting motor current 	113
 Suppressing overcurrent stopping Overland signal (QL) 	114 115
 Overload signal (OL) Thermal overload 	115
– Thermistor (PTC)	117
– Supply voltage (POWER)	118
– External fault signal (EXT)	119
 Unattended start protection (USP) 	120
Braking	121
– DC braking (DCB)	121
 Regenerative braking 	122
Mathematical and logic functions	123
 Mathematical functions 	123
 Frequency offset (ADD) 	124
- Logic functions	125

		 PID control Configuring PID control Activating and deactivating PID control (PID) PID-system deviation (OD) Examples for reference/feedback value input in PID control Feedback value check signal (FBV) System settings Stop key Behaviour after STOP signal Interrupting the deceleration ramp - Pulse frequency (PNU b083) Reduced response time (RDY) Parameter access inhibit (SFT) Parameter inhibit (PNU b031) Initialization (default settings) Debug mode (PNU C091) 	127 130 131 131 132 134 135 135 135 135 135 136 137 138 139 139 140 142
6	Serial interface (Modbus)	General information about Modbus Technical features of the serial interface Setting the OPE/485 DIP switch Parameter settings for Modbus Displayed value (selection with PNU b089) The network protocol – Transmission – Function names and numbers Modbus register Holding register (word variable)	143 143 144 145 146 147 148 148 148 157 159
7	Error messages	Fault signals Fault signal register Fault signal (AL) Resetting fault signals (RST) Automatic restart after a fault Troubleshooting	181 181 182 183 183 184 186
8	Maintenance and inspection	General Device fans Service life of the internal DC link capacitors	189 189 190 191

Appendix		193
	Special technical data	193
	 DF51-322 device series 	193
	 DF51-320 device series 	194
	 DF51-340 device series 	195
	Weights and dimensions	196
	Optional modules	198
	– Keypad DEX-KEY-6	198
	– DEX-CBLICS connection cables	199
	 Mounting frame DEX-MNT-K6 	200
	– Keypad DEX-KEY-10	204
	– CANopen interface module DE51-NET-CAN	209
	 PROFIBUS-DP interface module DE51-NET-DP 	210
	 Mounting frame DEX-MNT-NET 	211
	Operating software DrivesSoft2	212
	Cables and fuses	216
	Tightening torques and conductor cross-sections for the	210
	power terminals	217
	RFI filters	218
	Permissible motor cable lengths (EMC)	220
	Mains contactors	220
	Line reactor	222
	Motor reactor	223
	Sine-wave filter	224
	UL [®] Caution, Warnings and Instructions	226
		220
Parameter list		229
	Abbreviations of parameters and functions	229
	Parameter list for user-definable settings	230
Index		247

About this manual

This manual describes the DF51 series frequency inverters.

It contains special information which is required for engineering, installation and operation of the DF51 frequency inverters. The features, parameters and functions are described in detail and illustrated with examples of the most important applications. All information applies to the specified hardware and software versions.

You can order the print version of this manual under the order No. 292323.

Abbreviations and symbols

The following abbreviations and symbols are used in this manual:

EMC	ElectroMagnetic Compatibility	
ESD	ElectroStatic Discharge	
HF	High Frequency	
IGBT	Insulated Gate Bipolar Transistor	
PES	Positive earth cable screen connection	
PNU	Parameter Number	
RCD	Residual Current Protective Device	
FS	Factory Setting	

All measurements are in millimetres unless otherwise stated.

To improve the clarity of the illustrations, the enclosures of the frequency inverter and other safety components may not be shown in some figures. However, the frequency inverter must always be operated in the enclosure with all necessary safety components fitted.

Read the manual carefully before you install and operate the frequency inverter. We assume that you have a good knowledge of engineering fundamentals and that you are familiar with electrical systems and the applicable principles and are able to read, interpret and apply the information contained in technical drawings.

Indicates instructions to be followed

→ Indicates useful tips and additional information.

Caution!

Attention!

Warns about the possibility of major material damage and minor injury.

Warns about the possibility of minor material damage.

Warning!

Warns about the possibility of major material damage and severe injury or death.

To improve readability, the title of the chapter is indicated on the top of the left-hand page and the current section is indicated on the top of the right-hand page. except on the title page of each section and the blank pages at the end of each section.

04/07 AWB8230-1541GB

About the DF51 series 1

Figure 1: System overview

- ① DF51-... frequency inverter
- (2) DE51-LZ... RFI filters
- $(\ensuremath{\mathfrak{I}})$ Operator keypad with built-in interface
- ④ Fieldbus module DE51-NET-CAN, DE51-NET-DP (CANopen, PROFIBUS DP) ⑧ DEX-DEY-6 external keypad
- (5) DEX-CBL-...-ICS connection cables
- ⑥ DEX-DEY-10 external keypad
- External keypad DEX-DEY-61

Key to part numbers

Key to part numbers for DF51 series frequency inverters:

DF51-x x x-yyy	Motor rating code Power source: EU rated voltage (230 V/400 V)
	Version and model number 0 = basic version 2 = 1- or 3-phase supply connection
	Supply connection, voltage code (EU rated value) - 2 = 230 V (180 V - 0 % to 252 V + 0 %) 4 = 400 V (342 V - 0 % to 528 V + 0 %)
	Supply connection, phase code 3 = three-phase
	Series designation: Drives Frequency Inverter, Generation 5.1
	Drives Frequency inverter, Generation 5.1

Figure 2: Key to part numbers of the DF51 frequency inverters

Examples:

DF51-320-3K0	The DF51 frequency inverters
	Three-phase mains supply voltage: 230 V
	Assigned motor rating: 3 kW at 230 V
DF51-322-075	The DF51 frequency inverters
	Single-phase or three-phase supply: 230 V
	Assigned motor rating: 0.75 kW at 230 V
DF51-340-5K5	The DF51 frequency inverters
	Three-phase mains supply voltage: 400 V
	Assigned motor rating: 5.5 kW at 400 V

Rating and nameplate

The electrical connection ratings are printed on the terminal shroud.

Figure 3: Terminal shroud (example)

- Ue = rated voltage (mains supply voltage) 230 V 50/60 Hz = mains frequency
- (2) 9A = phase current at single-phase connection
- (3) 5.2A = phase current at three-phase connection
- ④ DF51-322-075 = part number
- (5) 3AC = three-phase output voltage in range from zero to mains supply voltage (Ue) and rated current 4 A
- 0.75 kW = assigned motor rating at rated voltage (230 V) or 1 HP (horse power)

The DF51's rating is recorded on the nameplate on the unit's side.

Figure 4: Nameplate of DF51 frequency inverter (example)

The labelling has the following meaning (example):

Туре	Part number:	DF51-322-025
Input	Mains input values: Phases, rated voltage, phase current and permissible voltage range, mains frequency	1 AC 230 V, 3.1A 3 AC 230 V, 2.0 A (Ue: 180264V±0%, 50/60Hz)
Output	Motor output values: Phases, voltage range, rated current, frequency range	3 AC 0Ue, 1.4 A, 0400 Hz
Motor	Assigned motor rating at specified rated voltage:	0.25 kW (230 V) 0.25 HP (230 V)
MFG-No	Manufacturer number and date	47AT21706LB Date: 0407

Inspecting the package content

The DF51 frequency inverters have been carefully packaged and prepared for delivery. The device may be transported only in its original packaging with a suitable transport system (see weight details). Observe the instructions and the warnings on the side of the packaging. This also applies after the device has been removed from its packaging.

Open the packaging with suitable tools and inspect the contents immediately after delivery to ensure that they are complete and undamaged. The package should contain the following items:

- One DF51 frequency inverter
- Instructions AWA8230-2146
- A CD containing:
 - this manual in PDF format in English and other languages,
 - the parameterization software for Windows PCs (98 to XP),
- Self-adhesive film with the most frequent parameters and several fault messages, → page 61.

For the parameterization software you will need the connection cable with the DEX-CBL-2M0-PC interface converter (not included as standard).

Figure 5: Equipment supplied

Check the nameplate attached to the frequency inverter (section "Rating and nameplate", page 8) to ensure that the frequency inverter is the part number you have ordered.

Layout of the DF51

Figure 6: Overview of the DF51

- ① LCD keypad with interface
- (2) Device fan (DF51...1K5 to ...7K5 only)
- (3) RJ 45 communication interface (Modbus)
- ④ Microswitch
- (5) Control signal terminals
- ⑥ Optional radio interference filter

- Heat sink
- (8) Earth connection (PE)
- (9) Power terminals
- (10) Signalling relay terminals
- 1 Terminal shroud (control section, power section)

Features of the frequency inverters

The frequency inverters of the DF51 series convert the voltage and frequency of an existing AC network into a DC voltage, from which they generates a three-phase alternating voltage with adjustable voltage and frequency. This variable output voltage allows a stepless speed control of three-phase asynchronous motors.

Figure 7: Function diagram of the frequency inverter

1 Mains input

Mains voltage *U*_e (EU rated voltage): DF51-320 3 AC 230 V, 50/60 Hz DF51-322 1/3 AC 230 V, 50/60 Hz DF51-340 3 AC 400 V, 50/60 Hz

- ② The bridge rectifier converts the AC voltage of the electrical supply to a DC voltage.
- (3) The DC link contains a charging resistor, smoothing capacitor and switched-mode power supply unit. It enables coupling of the DC bus voltage and the DC current supply $(U_{ZK}) = \sqrt{2} \times \text{mains voltage } (U_e)$
- ④ IGBT power inverter:

The power inverter converts the DC voltage of the internal DC link to a variable three-phase alternating voltage with variable frequency.

(5) Output voltage (U_2), motor connection:

three-phase, variable alternating voltage, 0 to 100 $\,\%$ of input voltage (U_e)

Output frequency (f₂): variable from 0 to 400 Hz

Rated output current (I_{2N}) :

1.4 to 32 Å (230 V series), 1.5 to 16 Å (400 V series) with about 1.5 times starting current for 60 s, at an operating frequency of 5 kHz and an ambient temperature of 40 °C. Starting torque: 100 % at 6 Hz. Motor connection, assigned shaft power (P_2): 0.25 to 7.5 kW at 230 V 0.37 to 7.5 kW at 400 V

6 LCD keypad with interface (RJ 45, Modbus)

Selection criteria

Select a suitable frequency inverter according to the rated motor current. The frequency inverter's rated output current must be greater than or equal to the motor's rated current.

The following drive data is assumed to be known:

- Type of motor (three-phase asynchronous motor)
- Mains voltage = supply voltage of the motor (for example 3 ~ 400 V)
- Rated motor current (guide value, dependent on the circuit type and the supply voltage)
- Load torque (square-law, constant, with 1.5 times the starting torque)
- Ambient temperature (rated value 40 °C).
- → If several motors are connected in parallel to the output of a frequency inverter, the motor currents are geometrically added, i.e. separately by active and reactive current components. When you select a frequency inverter, make sure that it can supply the total resulting current.
- → If you connect a motor to an operational frequency inverter, the motor draws a multiple of its rated current. When you select a frequency inverter, make sure that the starting current plus the sum of the currents of the running motors will not exceed the rated output current of the frequency inverter.

For the frequency inverter's rated output current, see the section "Special technical data" in the appendix from page 193.

Proper use

The DF51 frequency inverters are not domestic appliances. They are designed only for industrial use as system components.

The DF51 frequency inverters are electrical apparatus for controlling variable speed drives with three-phase motors. They are designed for installation in machines or for use in combination with other components within a machine or system.

After installation in a machine, the frequency inverters must not be taken into operation until the associated machine has been confirmed to comply with the safety requirements of Machinery Safety Directive (MSD) 89/392/EEC and meets the requirements of EN 60204. The user of the equipment is responsible for ensuring that the machine use complies with the relevant EU Directives.

The CE markings on the DF51 frequency inverter confirm that, when used in a typical drive configuration, the apparatus complies with the European Low Voltage Directive (LVD) and the EMC Directives (Directive 73/23/EEC, as amended by 93/68/EEC and Directive 89/336/EEC, as amended by 93/68/EEC).

In the described system configurations, DF51 frequency inverters are suitable for use in public and non-public networks. Depending on their location of use, external filtering may be necessary.

A connection to IT networks (networks without reference to earth potential) is permissible only to a limited extent, since the device's built-in filter capacitors connect the network with the earth potential (enclosure). On earth free networks, this can lead to dangerous situations or damage to the device (isolation monitoring required).

To the output of the frequency inverter (terminals U, V, W) you must not:

- connect voltage or capacitive loads (for example phase compensation capacitors),
- connect multiple frequency inverters in parallel,
- make a direct connection to the input (bypass).

Observe the technical data and terminal requirements. For additional information, refer to the equipment nameplate or label and the documentation.

Any other usage constitutes improper use.

From DF5 to DF51

The frequency inverter DF51 is a further development of the proven DF5 device, whose basic functions, terminal designations, menu structures, etc. were adopted and extended in the new product. The following list gives a short overview of the most important changes.

- Reduced the enclosure size and fewer enclosure versions. Same footprint dimensions: DF5-322-018, DF5-322-037, DF5-322-056 → DF51-322-025, DF51-322-037, DF51-322-055.
- Up to 48 % size reduction (w × H × d) e.g. DF5-340-4K0 (140 × 184.5 × 175 mm³) → DF51-340-4K0 (140 × 130 × 166 mm³)
- Compact construction type with built-in keypad. Keypads DEX-KEY-6 and DEX-KEY-61 are optionally available and can be fitted separately from the frequency inverter, for example installation in a control panel door with the optional mounting frame DEX-MNT-K6.
- Fieldbus modules for CANopen (option DE51-NET-CAN) and PROFIBUS DP (option DE51-NET-DP) for connection to the frequency inverter. The modules are mounted separate from the frequency inverter in the optional mounting frame DEX-MNT-K6.
- Plug-in control terminals
- The parameter numbers (PNU) have been retained but like the DF6 and DV6 series now have an added, fourth digit. For example, A01 was changed to A001 and C03 to C003.
- Extended functionality (e.g. PID controller)
- The new logic function allows logic linking (AND, OR, XOR) of the digital outputs as well as the addition and multiplication of the analog reference and actual values.
- Because of the units' modular design and extensive communication capability, the control hierarchy can now be defined with microswitches (485/OPE and TM/PRG).

Service and warranty

In the unlikely event that you have a problem with your Moeller frequency inverter, please contact your local sales office.

When you call, have the following information ready:

- Exact frequency inverter part number (\rightarrow nameplate)
- Date of purchase
- Detailed description of the problem which has occurred with the frequency inverter.

If some of the information printed on the nameplate is not legible, please state only the information which is clearly legible.

Information concerning the guarantee can be found in the Moeller General Terms and Conditions of Sale.

24-hour hotline: +49 (0)1805 223822

2 Engineering

This section describes the "Performance features/Technical data" and the requirements and standards relating to the following issues:

- Connection to power supplyEMC Directives for PDS drive systems

Performance features/Technical data

General			
Standards			EN 50178, IEC 61800-3, EN 61800-3
Ambient temperature ¹⁾			
Operating temperature		°C	-10 to +40 with rated current $I_{\rm e}$ without reduced performance, up to +50 with clock frequency reduced to 2 kHz and output current reduced to 80 % $I_{\rm e}$
Storage, transportation		°C	-25 to +70
Mechanical shock resistance			Vibration and impact, max. 5.9 m/s ² (0.6 g) at 10 to 55 Hz
Pollution degree			VDE 0110 Part 2, pollution degree 2
Climatic proofing			Class 3K3 according to EN 50178 (non-condensing, average relative humidity 20 to 90 %)
Installation altitude		m	0 to 1000 a.s.l., up to 4000 m with reduced output current of 2 % $\rm I_{e}$ per 100 m
Mounting position			Vertically suspended
Free surrounding areas			100 mm above and below device
Emitted interference			IEC/EN 61800-3 (with optional DE51-LZ radio interference filter and screened motor cables)
Noise immunity			IEC/EN 61800-3, industrial environment
Insulation resistance			Overvoltage category III according to IEC/EN 60204 up to 460 V + 10 % and category II up to 480 V + 10 %
Mains voltage balance			$\leq \pm 3 \%$
Total harmonic distortion (THD)			$\leq \pm 10 \%$
Leakage current to PE		mA	< 3.5 (to EN 50178), without EMC filter
Degree of protection			IP20
Protection against direct contact			Finger and back-of-hand proof (VGB 4)
Protective isolation against switching circuitry			Safe isolation from the mains. Double basic isolation (to EN 50178).
Protective measures			Overcurrent, earth fault, overvoltage, undervoltage, overload, overtemperature, electronic motor protection: I^2t monitoring and PTC input (thermistor or thermostat)
Power section			
DF51-320			
Rated operational voltage		V AC	230
Rated voltage	Ue	V	3 AC 180 to 264 V ± 0 %
DF51-322			
Rated operational voltage		V AC	230
Rated voltage	Ue	V	1/3 AC 180 to 264 V ± 0 %
DF51-340			
Rated operational voltage		V AC	400
Rated voltage	Ue	V	3 AC 342 to 528 V ± 0 %
Mains frequency		Hz	50/60 (47 to 63 ± 0 %)

Modulation method		Pulse width modulation (PWM), U/f characteristic control
Switching frequency		5 kHz, adjustable from 2 to 14 kHz
Output voltage	V	3 AC U _e
Output frequency	Hz	050, max. 400
Frequency resolution	Hz	0.1 with digital setpoint values Maximum frequency/1000 with analog setpoint values
Frequency error limit at 20 °C \pm 10 K		± 0.01 % of maximum frequency at digital reference values, g0.1 % of maximum frequency at analog reference values
Permissible overcurrent		150 % for 60 s, every 600 s
Torque during start		100 % from 6 Hz
DC braking		DF 0 to 100 %, range: 0.5 to 60 Hz, braking time: 0 to 60 s
Control section		
Internal voltages		
Control	۷	24, max. 30 mA
Reference inputs	٧	10, max. 10 mA
Analog and digital actuation		
Analog outputs		 1 output 010 V, max. 1 mA Resolution 8 bit
Analog inputs		 1 input, 0 to 9.6 V (10 V normal) Input impedance 10 kΩ 1 input, 4 to 19.6 mA (20 mA normal) Load resistor: 250 Ω Resolution: 10 bit
Digital inputs		 5 inputs, user-configurable Max. 27 V Low: F 2 V High: 17.4 27 V Input impedance 5.6 kΩ
Digital outputs		 2 outputs Max. 27 V, max. 1 mA
Serial interface		RS 485 (Modbus RTU, up to 19.2 Kbit/s)
Relay, changeover contact		 250 V AC, max. 2.5 A (resistive load) 250 V AC, max. 0.2 A (inductive load, p.f. = 0.4) AC 100 V, min. 10 mA
		 30 V DC, max. 3 A (resistive load) 30 V DC, max. 0.7 A (inductive load, p.f. = 0.4) DC 5 V, minimal 100 mA
Keypad		
Operation		 4 function keys for setting parameters 2 function keys for actuation
Display		Four-digit 7-segment display and 8 LEDs (status indication)
Potentiometer		Reference inputs

Features (not a complete listing)	 Automatic voltage regulation Unattended start protection Variable amplification and output voltage reduction Frequency jumps (suppress frequency ranges) Minimum/maximum frequency limitation Frequency offset Mathematical functions of reference values and process variables (addition, subtraction, multiplication) Logic linking of functions (AND, OR, EXCLUSIVE OR)
	 Fault register available PID control Automatic torque boost Second parameter set selectable
Safety features	 Overcurrent Overvoltage Undervoltage Overtemperature Earth fault (on Power On) Overload Electronic motor protection Current transformer fault
Optional accessories	 Remote operating units DEX-KEY-10, DEX-KEY-6, DEX-KEY-61 Line reactor to improve the power factor RFI filter Motor reactor Sine-wave filter Field bus interface module CANopen

All rating data of the power section is based on a switching frequency of 5 kHz (default setting) and an ambient temperature of +40 °C, for operation of a four-pole three-phase asynchronous motor.

The following illustration provides an overview of the connections.

Figure 9: Power input connection overview

- ① Network configuration, mains voltage, mains frequency Interaction with p.f. correction systems
- (2) Fuses and cable cross-sections, line protection
- ③ Protection of persons and domestic animals with residual-current protective devices
- 4 Mains contactor
- (5) Line reactor, radio interference filter, line filter
- 6 Frequency inverter: mounting, installation
 - Power connection EMC measures
 - Circuit examples

- Motor reactor du/dt filter
 Sinusoidal filter
- (8) Motor supply cables, cable lengths, shielding, motor protection Thermistor connection: terminals 5 and L
- (9) Motor connection
- Parallel operation of multiple motors on a single frequency inverter
- DC bus voltage coupling: terminals DC+ and DC-DC infeed: terminals DC+ and DC External braking units: terminals DC+ and DC-

Connection to power supply

The DF51 frequency inverters can not be used in every network configuration without limitations (network configuration according to IEC 364-3).

Use only components (cables, FI switches, reactors, filters and contactors) that match the frequency inverter's rated values. Otherwise there is a danger of fire.

Network configuration

Networks with earthed centre point (TT/TN networks):

- DF51 frequency inverters can be used without limitations in TT and TN networks. The ratings of the DF51 frequency inverters must, however, be observed.
- → If many frequency inverters with a single-phase supply are connected to the same supply network, they should be distributed symmetrically over all three phases and the load placed on the common neutral connection (mains r.m.s. current) must be taken into account. If necessary, the cross-section of the neutral pole must be increased, if it conducts the total current of all single-phase devices.

Networks with isolated centre point (IT networks):

 The use of DF51 frequency inverters in IT networks is only permissible to a limited extent. In this case, a suitable device (isolation monitor) to monitor earth faults and isolate the frequency inverter from the mains must be used.

Attention!

With an earth fault in an IT system, the capacitors of the frequency inverter which are switched to earth are subject to a very high voltage and safe operation of the frequency inverter is no longer guaranteed. The situation can be remedied with an additional isolating transformer with an earthed centre point on its secondary, which is then used to supply the input of the frequency inverter. This constitutes an individual TN system for the frequency inverter.

Mains voltage, mains frequency

The ratings of the DF51 frequency inverters cover European and American standard voltages:

- 230 V, 50 Hz (EU) and 240 V, 60 Hz (USA) for DF51-320 and DF51-322
- 400 V, 50 Hz (EU) and 460 V, 60 Hz (USA) for DF51-340

The permissible mains voltage range is:

- 230/240 V: 180 V 0 % to 264 V + 0 %
- 380/460 V: 342 V − 0 % to 528 V + 0 %

The permissible frequency range is 47 Hz - 0 % to 63 Hz + 0 %.

The motor rating to mains voltage assignments are listed in the appendix, section "Special technical data", page 193.

Voltage balance

A voltage that deviates from its ideal form can cause uneven loads in the three-phase AC network's lines and therefore a voltage imbalance.

With frequency inverters with a three-phase supply, this unbalance causes an uneven loading of the mains rectifier's diodes. This can cause the diodes to fail prematurely.

The permissible mains voltage unbalance is $\leq \pm 3$ %

Total harmonic distortion (THD)

Total harmonic distortion is a measure of the harmonic distortions of the sinusoidal input quantities in the frequency inverter. It is given in percent of the total value.

$$K = \sqrt{\frac{U_2^2 + U_3^2 + U_4^2 + \dots + U_n^2}{U_1^2 + U_2^2 + U_3^2 + U_4^2 + \dots + U_n^2}} \times 100\%$$

 $U_1 =$ fundamental component THD k = $0.1 \rightarrow K = 10 \% \sim -20 \text{ dB}$ (THD suppression)

$$THD = \frac{\sqrt{U_2^2 + U_3^2 + U_4^2 + ... + U_n^2}}{U_1}$$

THD (Total Harmonic Distortion)

Interaction with p.f. correction systems

The DF51 frequency inverters absorb only a small fundamental reactive power from the AC supply. Compensation is therefore unnecessary.

Attention!

Operate DF51 series frequency inverters on mains with p.f. correction equipment only when this equipment is damped with reactors.

Fuses and cable cross-sections

The fuse ratings and cable cross-sections required for the network connection depend on the rating of the frequency inverter and the drive's operating mode.

When selecting the cable cross-section, take the voltage drop under load conditions into account. Compliance to further standards (for example VDE 0113, VDE 0289) is the responsibility of the user.

The recommended fuses and their assignment to the DF51 frequency inverters are listed in the appendix, section "Mains contactors", page 220.

The national and regional standards (for example VDE 0113, EN 60204) must be observed and the necessary approvals (for example UL) at the site of installation must be fulfilled.

When the device is operated in a UL-approved system, use only UL-approved fuses, fuse bases and cables.

The leakage currents to earth (to EN 50178) are greater than 3.5 mA. The connection terminals marked PE and the enclosure must be connected to the earth circuit.

7 Caution!

The specified minimum PE conductor cross-sections (EN 50178) must be maintained. Use a PE conductor whose cross-section is as least as large as the terminal capacity of the power terminals.

Residual current circuit-breakers

To protect persons and domestic animals, residual current circuitbreakers according to VDE 0100; (RCDs, also called earth-leakage circuit-breakers or ELCBs) or universal current sensitive RCCBs according to EN 50178 and IEC 755 must be used.

Identification on the residual-current circuit-breakers

Logo	\sim	\sim	22
Туре	Alternating	Pulse-current	Universal current
	current sensitive	sensitive	sensitive
	(RCD, Type AC)	(RCD, Type A)	(RCD, Type B)

The frequency inverters contain a built-in mains rectifier. On a frame fault, this can cause a fault DC to inhibit tripping of the AC or pulse-current sensitive residual-current circuit-breaker, thereby preventing it from fulfilling its protective function. We therefore recommend the use of:

- Pulse-current sensitive RCCBs with a rated fault current ≥ 30 mA for frequency inverters with a single-phase supply
- Universal RCCBs with a rated fault current ≥ 300 mA for frequency inverters with a three-phase supply

The approximate fault current values of the DF51 frequency inverters and their assigned radio interference filters are listed in the appendix, section "RFI filters", page 218.

Spurious tripping of a residual-current circuit breaker can be caused by the following:

- capacitive compensation currents in the cable screens, particularly with long, screened motor cables,
- simultaneous connection of multiple frequency inverters to the mains supply,
- the use of additional reactors and filters (radio interference filters, line filters).

7 Attention!

Residual-current circuit-breakers must be installed only on the primary side between the incoming supply and the frequency inverter.

Caution!

Use only cables, residual-current circuit breakers and contactors with a suitable rating. Otherwise there is a danger of fire.

Mains contactor

The mains contactor is connected to the mains side input cables L1, L2, L3 or L and N (depending on its type). It allows the DF51 frequency inverter on the supplying network to be switched on and off during operation and to be disconnected in the event of a fault.

Mains contactors and their assignment to the DF51 frequency inverters are listed in the appendix, section "Mains contactors", page 220.

Current peaks

In the following cases, a relatively high peak current can occur on the primary side of the frequency inverter (i.e. on the supply voltage side), which, under certain conditions, can destroy the frequency inverter's input rectifier:

- Imbalance of the voltage supply greater than 3 %.
- The maximum power output of the point of supply must be at least 10 times greater than the maximum frequency inverter rating (about 500 kVA).
- If sudden voltage dips in the supply voltage are to be expected, for example when:
 - a number of frequency inverters are operated on a common supply voltage.
 - a thyristor system and a frequency inverter are operated on a common supply voltage.
 - power factor correction devices are switched on or off.

In these cases, a line reactor with about 3 % voltage drop at rated operation should be installed.

Line reactor

The line reactor (also called commutating or line reactor) is connected to the mains side input cables L1, L2 and L3, or L and N (depending on type). It reduces the harmonics and therefore – by up to 30 % – the apparent mains current.

A mains reactor also limits any current peaks caused by potential dips (for example caused by p.f. correction equipment or earth faults) or switching operations on the mains.

The mains reactor increases the lifespan of the DC link capacitors and consequently the lifespan of the frequency inverter. Its use is also recommended:

- with single-phase supplies (DF51-322),
- with derating (temperatures above +40 °C, sites of installation more than 1000 m above sea level),
- for parallel operation of multiple frequency inverters on a single mains supply point,
- with DC link coupling of multiple frequency inverters (interconnected operation).

Line reactors and their assignment to the DF51 frequency inverters are listed in the appendix, section "Line reactor", page 222.

Mains filter

Mains filters are a combination of line reactors and radio interference filters in a single enclosure. They reduce the current harmonics and dampen high frequency radio interference levels.

Radio interference filters only dampen high frequency radio interference levels.

Attention!

When line filters or radio interference filters are used, the drive unit's leakage current to earth increases. Observe this point when residual-current circuit-breakers are used.

EMC compliance

The DF51 frequency inverters operate with fast electronic switches (IGBTs). For this reason, radio interference can occur on the frequency inverter's output, which may effect other electronic devices in the direct vicinity, such as radio receivers or measurement instruments. To protect against this radio frequency interference (RFI), the devices should be screened and installed as far away from the frequency inverter as possible.

Figure 10: DF51 and radio interference filter in a sealed enclosure

K1: RFI filter

- T1: frequency inverter
- 1 Screened motor cable

EMC Directives for PDS drive systems

(PDS = Power Drive System)

In Europe, the EMC Directive must be adhered to by law.

The EMC product standard for drive systems is IEC/EN 61800-3 and EN 61800-3 including A11 (02/2001). This standard must also be maintained by law. The generic standards do not apply to drive systems, although many values are the same.

EN 61800-3 does not apply to the frequency inverter itself, but to a complete drive system including cable and motor. A drive system can consist of more than one drive. EN 61800-3 regards drive systems that consist of several drives as **a single** drive system.

Declarations of conformity relate to a "typical drive system" with given cable length, motor and filter for a single drive. The drive system's manufacturer is responsible for the complete drive system.

Noise immunity

If you use DF51 frequency inverters in European Union (EU) countries, you must observe EMC Directive 89/336/EEC. This includes compliance with the following conditions:

Supply (mains) voltage for the frequency inverter:

- Voltage fluctuation ±10 % or less
- Voltage imbalance ±3 % or less
- Frequency variation ±4 % or less

If one of the conditions listed here cannot be fulfilled, you must install an appropriate line reactor (\rightarrow section "Line reactor" in the appendix, page 222).

Emitted interference and radio interference suppression

Used with the assigned radio interference filters, the DF51 frequency inverters meet the requirements of the EMC Product Standard IEC/EN 61800-3 for domestic use (first environment) and therefore also for the higher limit values of industrial environments (second environment).

Table 1: Category of limit values in IEC/EN 61800-3

First environment Power supply from the public mains, which also supplies households.	C1 Corresponds with CISPR 11 Class B.	C2 Corresponds with CISPR 11 Class A Group 1 and Warning.
Second environment	C3	C4
Power supply from a	Corresponds with	Corresponds with
network that does not	CISPR 11 Class A	CISPR 11 Class A
supply households	Group 2 and	Group 2 or EMC
(industrial networks).	Warning.	plan.

Categories C1...C3 apply only to frequency inverters with RFI filter!

To ensure adherence to the limit values, observe the following points:

- Reduce performance-related interference with line filters and/or radio interference filters including line reactors.
- Reduce electromagnetic emission interference by screening motor cables and signal cables.
- Compliance with installation requirements (EMC-compliant installation).

EMC interference class

With frequency inverters, performance-related and emitted interference increase with the switching frequency. The frequency at which performance-related interference occurs also increases with longer motor cables. When the respective radio interference filter is used, the IEC/EN 61800-3 standard is complied to as follows:

- Limit values for emitted interference corresponding to first environment, interference immunity according to second environment (restricted and unrestricted putting into circulation) = universal use in both environments.
- Maximum cable length in the first environment is 10/25 m.

- The maximum cable length in the second environment is 25/ 50 m at 5 kHz operating frequency. Observe installation instructions (-> section "EMC measures in the control panel", page 33).
- → With he assigned RFI filter, the frequency inverters DF51 can be used in all categories C1...C4.
- → To be able to adhere to the requirements of the machine manufacturer's CE Declaration, the EMC measures described here must be fulfilled.
- → If the final operating environment is not known (for example for mobile machines), at least category C2 must be maintained.

For a machine with several drives it may make economic sense to use a single RFI filter for the whole machine instead of a separate filter for each drive. The machine must then be tested by an approved body and the filter determined.

Further information:

- section "EMC-compliant installation", page 32
- section "RFI filters", page 218
- section "Permissible motor cable lengths (EMC)", page 220

Motor and circuit type

The stator winding of the motor can be connected as a star or delta configuration in accordance with the rating data on the nameplate.

Figure 12: Connection types

Frequency inverters	DF51-322-075	DF51-322-075	DF51- 340-075	DF51- 340-1K5
Mains voltage	3 AC 230 V	1 AC 230 V	3 AC 400 V	3 AC 400 V
Mains current	5.2 A	9 A	3.3 A	5 A
Motor circuit	Delta	Delta	Star	Delta
Motor current	3.5 A	3.5 A	2 A	3.5 A
Motor voltage	3 AC 0 to 230 V	3 AC 0 to 230 V	3 AC 0 to 400 V	3 AC 0 to 230 V
Motor speed	1430 r.p.m.	1430 r.p.m.	1430 r.p.m.	2474 r.p.m. ¹⁾
Motor frequency	50 Hz	50 Hz	50 Hz	87 Hz ¹⁾

Table 2: Assignment of frequency inverters to example motor circuit (fig. 11)

1) Observe the motor's limit values!

Connecting motors in parallel

The DF51 frequency inverters allow parallel operation of several motors in *U*/*f* control mode:

- *U*/*f* control: several motors with the same or different ratings. The sum of all motor currents must be less than the frequency inverter's rated current.
- *U*/*f* control: parallel control of several motors. The sum of the motor currents plus the motors' inrush current must be less than the frequency inverter's rated current.

Parallel operation at different motor speeds can be implemented only by changing the number of pole pairs and/or changing the motor's transmission ratio.

Figure 13: Parallel connection of several motors to one frequency inverter

Attention!

If a frequency inverter controls a number of motors in parallel, the contactors for the individual motors must be designed for AC-3 operation. Do not use the mains contactors listed in the table in the appendix (section "Mains contactors", page 220). These mains contactors are only designed for the mains (primary) currents of the frequency inverter. If contactors of this size are used in the motor circuit, the contacts could weld.

Connecting motors in parallel reduces the load resistance at the frequency inverter output and the total stator inductivity, and increases the leakage capacitance. As a result, the current distortion is larger than it is in a single-motor circuit. To reduce the current distortion, motor reactors or sine-wave filters can be connected at the frequency inverter output (\rightarrow section "Motor reactor", page 223 and \rightarrow section "Sine-wave filter", page 224).

Example: copper wire winder

- 16 motors
- P = 60 W
- I = 0.21 A
- *U* = 400 V
- p.f. = 0.7
- Direct starting current: 2 A

If a wire breaks during winding, the corresponding motor is automatically switched off. When the wire is rejoined, the motor can be started up again. Only one motor can be started up at a time.

Frequency inverter selection:

15 motors in operation:	15 × 0.21 A	= 3.15 A
Connect one motor:		2.00 A
		5.15 A

DF51-340-2K2, rated current 5.5 A

DEX-LM3-008 motor reactor

The current consumption of all motors connected in parallel must not exceed the frequency inverter's rated output current I_{2N}.

- Electronic motor protection can not be used when operating the frequency inverter with several parallel connected motors. You must, however, protect each motor with thermistors and/or overload relays.
- → The use of motor-protective circuit-breaker at the frequency inverter's output can lead to nuisance tripping.

If motors with widely differing ratings (for example 0.37 kW and 2.2 kW) are connected in parallel to the output of a frequency inverter, problems may arise during starting and at low speeds. Motors with a low motor rating may be unable to develop the required torque due to the relatively high ohmic resistance of their stators. They require a higher voltage during the starting phase and at low speeds.

When an individual motor is switched into the frequency inverter's output, it behaves as if is connected directly to the electrical mains. When you select a frequency inverter, take into account the highest possible inrush current and use a motor reactor or a sinewave filter.

Motor cable

To ensure EMC, use only screened motor cables. The length of the motor cables and related components has an influence on control mode and operating behaviour. In parallel operation (multiple motors connected to the frequency inverter output), the resulting cable lengths $l_{\rm res}$ must be calculated:

 $l_{\rm res} = \Sigma l_{\rm M} \times \sqrt{n}_{\rm M}$

- Σl_{M} : sum of all motor cable lengths
- $n_{\rm M}$: number of motor circuits

→ With long motor cables, the leakage currents caused by parasitic cable capacities can cause the "earth fault" message. In this case, motor filters must be used.

To optimize drive behaviour, keep the motor cables as short as possible.

Motor reactor du/dt filter Sinusoidal filter

Motor reactors compensate for capacitive currents with long motor cables and with grouped drives (multiple connection of parallel drives to a single inverter).

The use of motor reactors is recommended for (observe the manufacturers' instructions):

- Grouped drives.
- Three-phase asynchronous motors with a maximum frequencies above 200 Hz.
- Reluctance or permanent-field synchronous motors with a maximum frequency above 120 Hz.

du/dt filters limit the rate of voltage increase at the motor terminals to below

500 V/ μ s. They should be used for motors with unknown or insufficient electric strength for the insulation.

7 Attention!

During the engineering phase, keep in mind that the voltage drop across motor filters and du/dt filters can be up to 4 % of the frequency inverter's output voltage.

When sine-wave filters are used, the motors are supplied with near-sinusoidal voltage and current.

Attention!

During the engineering phase, keep in mind that the sinewave filter must be matched to the output voltage and to the frequency inverter's pulse frequency.

The voltage drop at the sine-wave filter can be up to 15 % of the frequency inverter's output voltage.

Bypass motor control

To allow operation of a motor with both the frequency inverter and directly from the mains, the incoming supplies must be mechanically interlocked:

Ŵ

Attention!

A changeover between the frequency inverter and the mains supply must take place in a voltage-free state.

Caution!

The frequency inverter outputs (U, V, W) must not be connected to the mains voltage (destruction of the device, risk of fire).

Figure 14: Bypass motor control

∇ At

Attention!

Switch S1 must switch only when frequency inverter T1 is at zero current.

Contactors and switches (S1) in the frequency inverter's output and for DOL starting must be dimensioned for AC-3 and the motor's rated power.

Braking

Motor braking shortens unwanted deceleration distances and times. Braking can be mechanical or electrical.

Mechanical brakes act directly on the motor's rotating shaft and experience mechanical wear. The type of friction surface used depends on the brake's purpose:

- Emergency-Stop braking
- Normal braking during operation
- Holding brakes

Electrical braking – which does not cause wear – can be implemented with frequency inverters:

- DC braking
- Regenerative braking
- Dynamic braking

DC braking

In DC braking – also called induction braking – the frequency inverter supplies three-phase current to the motor's three-phase stator winding. This creates a stationary magnetic field, which in turn induces a voltage in the moving rotor. Because the rotor's electrical resistance is low, even small induction voltages can cause a high rotor current and therefore a strong braking action. As the rotor slows down, the frequency of the induced voltage and with it the inductive resistance drops. The braking effect of the resistive load increases, but the resulting braking torque abruptly drops shortly before the rotor stops and disappears completely as soon as the rotor is stationary. DC braking is therefore not suitable for holding loads or for intermediate braking. Once DC braking has been activated, the motor comes to a standstill. Note also that DC braking causes increased heat dissipation in the motor.

Regenerative braking

When a motor is braked by reducing the output frequency (dynamic braking), the motor, driven by the load, can act as a generator. This happens whenever the frequency inverter's output frequency is lower than the motor's speed. The centrifugal energy is fed into the frequency inverter's internal DC link, where it increases the voltage. The frequency inverter monitors the voltage increase and switches off when the highest permissible value is exceeded. A fault signal is issued.

Regenerative braking applies an additional load to the frequency inverter's inverter. it should not exceed 10 % of the duration of one operating cycle.

With the resistance measurement described below, the system's braking capacity can be increased.

Figure 15: Braking transistor with external braking resistor

- ① Centrifugal mass (machine)
- (2) Braking unit
- (3) Braking resistance (R_B)
- \rightarrow energy flow

PID control

Controllers continually compare a measured feedback value (x) with a given reference value (w). The difference between the two values is the control deviation or control differential (e). It forms the manipulated variable (u), which then influences the controlled system, so that the feedback value lies as close as possible to the reference value.

The manipulated variable is formed by a PID controller, which balances out any changes (fluctuations) in the control circuit until a steady-state condition is reached (feedback value = reference value.

Figure 16: Block diagram of a closed-loop control system

w: reference input variable (reference value)

e: system deviation (difference between actual value and reference value)

- u: manipulated variable for the frequency inverter
- x: controlled variable (measured or actual value)
- y: controlled process variable

Control device: here a frequency inverter with PID controller Controlled system: here a motor with controlled variable

Dynamic braking

Dynamic braking allows a controlled speed reduction from a high motor speed to a specific lower speed. The resulting excessive energy causes the DC link voltage to increase. An extreme braking resistance (high-capacity resistor) converts the excess energy into heat, similar to the brake of a car.

The energy is automatically passed from the frequency inverter's internal DC link to the braking resistor through additional braking devices – also called brake choppers. Vector frequency inverters (\rightarrow DV51) contain built-in braking devices (braking transistor).

The PID controller is a combination of proportional, integral and differential components. The control parameters are the proportional-action coefficient K_P, the reset time T_N and the derivative action time T_V . Using all three control methods, PID control meets all basic requirements, such as:

- speed,
- stability,
- static accuracy,
- sufficient damping.

Figure 17: PID control

e: system deviation (difference between actual value and reference value)

- u: manipulated variable for the frequency inverter
- K_P: proportional-action coefficient (gain)
- T_N: reset time
- T_V: derivative action time
- xd: control difference

In practice, PI control is often used next to PID control.

P: proportional component

Proportional control responds without delay and proportional to any system deviation but can not fully match the reference value so that a deviation always remains. Small values of K (normalizing constant) dampen the control action (i.e. reduce the rate of change), while large values result in instability.

Figure 18: P-control

I: integral component

In integral control, the rate of change is proportional to the system deviation. This avoids fluctuations in the actual value due to overshoot but can not cope with rapid changes. With I-control, zero deviation (actual value = reference value) can be achieved.

D: differential component

Differential control increases the value of K and therefore the rate of change while reducing system deviation. If the reference values is static, it does not issue a control signal. D-control is therefore used only in combination with P- or PI control.

PID control represents an "ideal" combination, allowing fast, accurate compensation of system deviations. In variable speed control, PID controller are used mainly for controlling speed, pressures and flow rates. In all cases, an actual value sensor is required, which must provide the frequency inverter with a suitable signal (0 to 10 V or 4 to 20 mA).

PID-control for frequency inverters is not suitable for systems with a response time below 50 ms.

04/07 AWB8230-1541GB

3 Installation

The DF51 frequency inverters are designed for installation in a control panel or a metal enclosure (for example to IP54).

During installation or assembly of the frequency inverter, cover up all ventilation slots and openings to ensure that no foreign bodies enter the device.

Fitting the DF51

The DF51 frequency inverters must be mounted vertically on a non-flammable background.

Mounting position

Figure 21: Mounting position

Mounting dimensions

A free space of at least 100 mm is required above and below the device to allow air circulation for cooling. The frequency inverter does not need free space to the sides. In practice, a gap of 10 mm is, however, advisable to simplify opening the terminal shroud.

Figure 22: Fitting dimensions in the control panel

To allow connection of the power and control signal terminals, make sure that the terminal shroud can always be opened and closed without impediment.

Larger spaces to the sides are required if a fieldbus module (CANopen, PROFIBUS DP) is to be connected. The recommended spacing is about 10 mm or 45 mm for side mounting.

- Do not fit devices with high magnetic fields (such as reactors or transformers) too near the frequency inverter.
- → Weights and dimensions of the DF51 are listed in the appendix in section "Weights and dimensions", page 196.

When you mount a DF51 in an individual enclosure, for example to increase its degree of protection, the distances to the enclosure walls must be at least as shown below.

Minimum free space for installation of DF51 inside an enclosure (separate mounting).

Figure 23: Minimum fitting dimensions in a full enclosure (local installation)

Calculation of control panel surface:

$$A = \frac{P_V}{\Delta T \times K} [m^2]$$

- A = Control panel surface $[m^2]$ calculated according to IEC 890)
- ΔT = Temperature difference [K], default value = 5.5 K

K = Heat transfer coefficient $\left[\frac{W}{m^2 \times K}\right]$ (default value = 5.5 for a steel control panel and 3.5 for a polyester enclosure)

 $P_v =$ Total heat dissipation of all fitted devices, \rightarrow section "Special technical data" from page 193

Mounting the DF51 Mount the DF51 frequency inverter as shown in fig. 24 and tighten the screws to the following torque values (\rightarrow table 3):

Figure 24: Mounting the DF51

Tightening torques of the mounting screws Table 3:

Ø [mm]				
[mm]		Nm	ft lbs	
5	M4	3	2.2	
6	M5	3	2.2	

EMC-compliant installation

For an EMC-compliant installation, we recommend the following measures:

- Installation of the frequency inverter in a metallic, electrically conducting enclosure with a good connection to earth.
- Installation of a radio interference filter on the input of and immediately adjacent to the frequency inverter.
- Screened motor cables (short cable lengths).
- ► Earth all conductive components and the enclosure using as short a cable as possible.

Fitting a radio-interference (RFI) filter

The RFI filter should be installed immediately adjacent to the frequency inverter. The connection cable between the frequency inverter and filter should be as short as possible. Screened cables are required if the length exceeds 30 cm.

The mounting surfaces for the frequency inverter and radio interference filter should be as free as possible from paint and oil residue.

The assigned DE51-LZ... radio interference filters (\rightarrow section "RFI filters" in the appendix, page 218) can be mounted under (footprint) or next to (book-type) the DF51 frequency inverter.

Figure 25: Footprint mounting

Figure 26: Book-type mounting (on right side in the example)

On the mains side, connect the RFI filter through the filter's screw terminals. Connect the filter's output lines inside the frequency inverter's power section after removing the terminal shroud.

Radio interference filters produce leakage currents which, in the event of a fault (phase failure, load unbalance), can be larger than the rated values. To prevent dangerous voltages, the filters must therefore be earthed before use. As the leakage currents are highfrequency interference sources, the earthing connections and cables must have a low resistance and large contact surfaces.

Figure 27: RFI filter connection

K1: RFI filter

T1: frequency inverter

With leakage currents \geq 3.5 mA, EN 60335 states that one of the following conditions must be fulfilled:

- the protective conductor must have a cross-section ≥ 10 mm², or
- the protective conductor is monitored to ensure continuity, or
- an additional conductor must be fitted.

For DF51 frequency inverters, use the assigned DE51-LZ... filters.

EMC measures in the control panel

EMC compliance should already be ensured in the engineering phase: making changes during installation invariably results in higher costs.

To ensure an EMC-compliant setup, connect all metallic components of the devices and of the control cabinet with each other using a large cross-section conductor with good HF conducting properties. Do not make connections to painted surfaces (Eloxal, yellow chromated). Connect mounting plates to each other, and the cabinet doors with the cabinet using contacts with large surface areas and short HF wires.

An overview or all EMC measures can be seen in the following figure.

- Fit additional RFI filters or mains filters and frequency inverters as closely as possible to each other and on a single metal plate (mounting plate).
- ► Lay cables in the control cabinet as near as possible to the earth potential. Cables that hang freely act as antennas.
- ➤ To prevent transfer of electromagnetic energy, lay interferencesuppressed cables (e.g. the mains supply line before the filter) and signal lines as far away as possible (at least 10 cm) from HFconducting cables (e.g. mains supply cable after a filter, motor power cable). This applies especially where cables are routed in parallel. Never use the same cable duct for interferencesuppressed and HF cables. Where crossovers are unavoidable, cables should always cross at right angles to each other.
- Never lay control or signal cables in the same duct as power cables. Analog signal cables (measured, reference and correction values) must be screened.

Figure 28: EMC-compliant setup

- (1) Large-area connection of all metallic control panel components.
- (2) Mounting surfaces of frequency inverter, RFI filter and cable screen must be free from paint.
- ③ Connect screens of cables at frequency inverter's output with earth potential (PES) across large surface area.
- (4) Large-area cable screen contacts with motor.
- (5) Large-area earth connection of all metallic parts.

Earthing

Connect the base (mounting) plate with the protective earth using a short cable. Connect all conducting components (frequency inverter, mains filter, motor filter, line reactor) by an HF wire and lay the protective conductor in a star configuration from a central earthing point. This achieves the best results. Make sure that the earthing measures have been correctly implemented (\rightarrow fig. 29). No other device which has to be earthed should be connected to the earthing terminal of the frequency inverter. If more than one frequency inverter is to be used, the earthing cables should not form a closed loop.

All conductive components (frequency inverter, line filter, line reactor, motor reactor, etc.) should have a large-surface connection with the earth potential (mounting plate).

Figure 29: Star-type point-to-point earthing

Cable routing

→ Lay the control and signal cables separately from the mains and motor cables.

Figure 30: Crossover of signal and power cables

Example: DF51

- ① Power cable: L1, L2, L3 or L and N, PE, U, V, W, L+, DC+, DC-
- (2) Control and signal cables: H, O, OI, L, AM, 1 to 5, 11 and 12, CM2, P24
 - Relay control cable: K11, K12, K14

If you are routing power and control cables in parallel, keep a distance of at least 100 mm between them.

Screening

Unscreened cables behave like antennae, i.e. they act as transmitters and receivers. To ensure EMC-compliant connection, screen all interference-emitting cables (frequency inverter/motor output) and interference-sensitive cables (analog reference and measured value cables).

Screening control and signal cables

To increase operational reliability, screen analog and digital control signal cables and lay them well away from the power cables.

→ With the optional ZB4-102-KS1, you can connect the control cable screens at one end. Order this item separately.

The effectiveness of the cable screen depends on a good screen connection and a low screen impedance. Use only screens with tinned or nickel-plated copper braiding, braided steel screens are unsuitable. The screen braid must have an overlap ratio of at least 85 percent and an overlap angle of 90°.

The following figure shows a sample protective circuit for the control signal terminals.

Figure 31: Control terminal connection (default setting)

Screening motor supply cables

Figure 32: Sample motor cable

- ① C screen braid
- 2 PVC outer sheath
- ③ Drain wire (copper strands)
- (4) PVC core insulation, 3 \times black, 1 \times green–yellow
- $(\mathbf{5})$ Textile braid and PVC inner material

The screened cable between frequency inverter and motor should be as short as possible. Connect the screen to earth at both ends of the cable using a large contact surface connection.

Lay the cables for the supply voltage separately from the signal cables and control cables.

Never unravel the screening or use pigtails to make a connection.

Figure 33: Inadmissible screen grounding (pigtails)

If contactors, maintenance switches, motor protection relays, motor reactors, filters or terminals are installed in the motor cabling, interrupt the screen near these components and connect it to the mounting plate (PES) using a large contact surface connection. The free, unscreened connecting cables should not be longer than about 100 mm.

Example: Maintenance switch

Figure 34: Maintenance switch, for example T... in an enclosure

- ① Metal plate, for example MBS-I2 (a Installation instructions AWA1150-2249), up to 32 A in a CI-K2 enclosure
- (2) Insulated PE terminal

In an EMC compliant control cabinet (metal enclosed, damped to about 10 dB), the motor cables do not need to be screened provided that the frequency inverter and motor cables are separated and partitioned from the other control system components. The motor cable screening must then be connected at the control cabinet (PES) with a large surface area connection.

The control cable and signal (analog reference and measured value) cable screens must be connected only at one cable end. The screen connection must have a large contact surface and a low impedance. Digital signal cable screens must be connected at both cable ends, also with large-surface, low-resistance connections.

Electrical connection

This section describes how to connect the motor and the supply voltage to the power terminals, and the signal cables to the control terminals and the signalling relay.

Warning!

Carry out the wiring work only after the frequency inverter has been correctly mounted and secured. Otherwise, there is a danger of electrical shock or injury.

Warning!

/!\

/孙

Carry out wiring work only under zero voltage conditions.

Caution!

Use only cables, residual-current circuit breakers and contactors with a suitable rating. Otherwise there is a danger of fire.

Connecting the power section

The electrical connections of the DF51 are made through plug-in control signal terminals and combination terminal screws in the power section.

To connect the power supply, motor cables and control signal cables, take off the terminal shroud.

Figure 35: Terminal shroud example

Opening the terminal shroud

Complete the following steps with the specified tools and without using force.

To open the terminal shroud:

- ▶ Press down on the latches 1.
- ► Then pull the terminal shroud downwards 2.

On devices DF51-...-5K5 and DF51-...-7K5, the terminal shroud hinges downwards and can be removed in its lowered position.

Figure 36: Opening the terminal shroud

▶ Pull out the cable retainer.

Figure 37: Removing the cable retainer

Power terminals

Arrangement of power terminals

The arrangement of power terminals depends on the size of the power section.

Figure 38: Arrangement of the power terminals

① Internal connection. Remove if a DC link reactor is used.

Table 4:	Description	of the	power	terminals
----------	-------------	--------	-------	-----------

Terminal designation	Function	Description	
L, L1, L2, L3, N	Supply voltage (mains voltage)	 Single-phase mains voltage: connection to L and N Three-phase mains voltage: connection to L1, L2, L3 	
U, V, W	Frequency inverter output	Connection of a three-phase motor	- + + - + - + + + + + + + + + + + + + +
L+, DC+	External direct voltage reactor	Terminals L+ and DC+ are bridged with a jumper. If a DC link reactor is used, the jumper must be removed.	-
DC+, DC-	Internal DC link	These terminals are used for connecting an optional external braking resistor and for DC linking and supplying DC multiple frequency inverters with DC power.	-
⊕, PE	Earthing	Enclosure earthing (prevents dangerous voltages on metallic enclosure elements in the event of a malfunction).	-

Table 5:

Connecting power terminals

Caution!

Select a frequency inverter that is suitable for the available supply voltage (\rightarrow section "Special technical data", page 193):

- DF51-320: three-phase 230 V (180 to 264 V ± 0 %)
- DF51-322: single- or three-phase 230 V (180 to 264 V ± 0 %)
- DF51-340: three-phase 400 V (342 to 528 V ± 0 %)

Caution!

Never connect output terminals U, V and W to mains voltage. Danger of electrical shock or fire.

Caution!

Each phase of the frequency inverter's supply voltage must be protected with a fuse (danger of fire).

Caution!

∕!∖

Make sure that all power cables are correctly tightened in the power section.

곆

Warning! The frequency inverter must be earthed. Danger of electrical shock or fire.

Warning!

Do not connect cables to the unmarked terminals in the power section. Some of these terminals do not have a function (dangerous voltages) or are reserved for DF51 internal use.

Connecting supply voltage

- ► Connect the supply voltage to the power terminals:
 - Single-phase supply voltage: L, N and PE
 - Three-phase supply voltage: L1, L2, L3 and PE
 - DC supply and DC link coupling: DC+, DC- and PE
- ► Tighten the cable connections according to → section "Tightening torques and conductor cross-sections for the power terminals" page 217.
- ▶ Refit the cable retainer. 1

Figure 39: Connecting cables to the power terminals

→ In frame sizes DF51-...5K5 and DF51-...7K5 the PE connection is located inside the enclosure.

Example: Connecting the power section

The following example provides a comparison of the connections for single-phase and three-phase supplies.

- ► Connect the motor cable to the U, V, W and PE terminals:
- Connect the mains voltage or the RFI filter outputs to the following terminals:
 - L, N and PE for single-phase power supply,
 - L1, L2, L3 and PE for three-phase power supply.

Figure 40: Power terminal connection example

F1, Q1:line protection Q11:mains contactor

R1: line reactor

- ① Optional K1: RFI filter
- T1: frequency inverter

M1:motor X1: terminals (e.g. control panel)

For protection on mains side \rightarrow section "Cables and fuses", page 216.

Observe the electrical connection data (rating data) on the motor's rating label (nameplate).

Caution!

If motors are used whose insulation is not suitable for operation with frequency inverters, the motor may be destroyed.

If you use a motor reactor or a sine-wave filter here, the rate of voltage rise can be limited to values of approx. 500 V/ μ s (DIN VDE 0530, IEC 2566).

By default, the DF51 frequency inverters have a clockwise rotation field. Clockwise rotation of the motor shaft is achieved by connecting the motor and frequency inverter terminals as follows:

Motor	DF51
U1	U
V1	V
W1	W

Figure 41: To determine direction of rotation, view from here.

In frequency inverter operation with the DF51, you can reverse the direction of rotation of the motor shaft by:

- actuating terminal 1 (FWD = clockwise rotating field) or 2 (REV = anticlockwise rotating field (default).
- applying a control signal through the interface or fieldbus interface connection.
- exchanging two of the phases connected to the motor.

Figure 42: Reversing the direction of rotation

The speed of a three-phase motor is determined by the number of pole pairs and the frequency. The output frequency of the DF51 frequency inverter is indefinitely variable from 0 to 400 Hz.

Pole-changing three-phase motors (Dahlander pole-changing motors), rotor-fed three-phase commutator shunt motors (slipring rotor) or reluctance motors, synchronous motors and servo motors can be connected, provided they are approved for use with frequency inverters by the motor manufacturer.

Caution!

The operation of a motor at speeds higher than the rated speed (see nameplate) can cause mechanical damage to the motor (bearings, unbalance) and the machinery to which it is connected and can lead to dangerous operating conditions!

7 Attention!

Uninterrupted operation in the lower frequency range (less than about 25 Hz) can lead to thermal damage (overheating) of self-ventilated motors. Possible remedies include over-dimensioning and external cooling independent of motor speed.

Observe the manufacturers recommendations for operation of the motor.

Connecting a signalling relay

The signalling relay consists of a floating contact (changeover switch). The contacts are connected to terminals K11, K12 and K14. The illustration to the right indicates the position of the signalling relay terminals.

Table 6:	Description	of the	cignolling	relay terminals
Table 0.	Describuon	or the	Siulidiiiiu	

Terminal designation	Description ¹⁾
K11	Default settings:
K12	Operating signal: K11–K14 closed Fault massage or neuror supply off: K11–K12
K14	 Fault message or power supply off: K11-K12 closed Characteristics of the relay contacts: Max. 250 V AC/2.5 A (resistive) or 0.2 A (inductive, power factor = 0.4); min. 100 V AC/ 10 mA Max. 30 V DC/3.0 A (resistive) or 0.7 A (inductive, power factor)
	power factor = 0.4); min. 5 V DC/100 mA
	K11 K14 K12
1) You can ass	ign the digital output functions to the signalling relay

1) You can assign the digital output functions to the signalling relay (PNU C021).

For information about configuring the signalling relay, see section "Signalling relay K1 (terminals K11, K12, K14)", page 109.

Table 7:	Conductor cross-sections, tightening torques and required
	tools for the signalling relay terminals

Connecting the control signal terminals

The control signal terminals are arranged in a single row. Wire the control signal terminals to suit their application. For instructions for changing the function of the control signal terminals, see section "Control signal terminal overview (input)", page 75.

7 Attention!

Never connect terminal P24 with terminals L, H, O, OI or AM.

Use twisted or screened cables for connecting to the control signal terminals. Earth the screen on one side with a large contact area near the frequency inverter. The cable length should not exceed 20 m. For longer cables, use a suitable signal amplifier.

ESD measures

Discharge yourself on an earthed surface before touching the control signal terminals and the circuit board to prevent damage through electrostatic discharge.

The illustration to the right shows the positions of the individual control signal terminals.

Figure 44: Position of control signal terminals

Table 8:	Connection options for control signal terminals
----------	---

The control signal terminals take solid and stranded cables without ferrule.

If the use of ferrules is required, use only ferrules with push-on sleeves.

Function of the control signal terminals

Table 9:	Function of the	control signal	terminals

No.	Function	Level	RFI	Technical data, description
L	Common reference potential	0 V	-	Reference potential for the internal voltage sources P24 and H
5	Digital input	HIGH: 17.427 V LOW: F 2 V	Reset	PNP logic, configurable, $R_i > 100 \text{ k}\Omega$ Reference potential: terminal L
4	Digital input		FF2 (FF3) = fixed frequency 2 (3)	PNP logic, configurable, $R_i = 5.6 \text{ k}\Omega$ Reference potential: terminal L
3	Digital input		FF1 (FF3) = fixed frequency 1 (3)	
2	Digital input		REV = anticlockwise rotating field	
1	Digital input		FWD = clockwise rotating field	
P24	Output control voltage	+24 V	-	Supply voltage for actuation of digital inputs 1 to 5. Load carrying capacity: 30 mA Reference potential: terminal L
Н	Output reference voltage	+10 V	-	Supply voltage for external reference value potentiometer. Load carrying capacity: 10 mA Reference potential: terminal L
0	Analog input	0 to +10 V	Frequency reference value (0 to 50 Hz)	$R_{\rm i}$ = 10 k Ω Reference potential: terminal L
01	Analog input	4 to 20 mA	Frequency reference value (0 to 50 Hz)	$R_{\rm B}$ = 250 Ω Output: terminal L
L	Common reference potential	0 V	-	Reference potential for the internal voltage sources P24 and H
AM	Analog output	0 to +10 V	Frequency actual value (0 to 50 Hz)	Configurable, DC voltage, 0 to 10 V corresponds to set end frequency (50 Hz). Load carrying capacity: 1 mA Reference potential: terminal L
CM2	Reference potential, transistor output	Max. 27 V	-	Connection: common reference potential (0 V, 24 V) of the external voltage source for the transistor outputs, terminals 11 and 12. Load carrying capacity: up to 100 mA (sum of terminals $11 + 12$)
12	Transistor output	Max. 27 V = CM2	RUN (operation)	Configurable, open collector
11	Transistor output		Reference frequency reached	Load carrying capacity: up to 50 mA

Figure 45: Control signal terminal strip (part 1)

Inputs 1 to 5 all have the same function and mode of operation except for terminal 5, which can also be configured as thermistor input.

Inputs 1 to 5 are optically and electrically isolated from the builtin control section (CPU). They are actuated with +24 V. You can use the device's internal control voltage from terminal P24 or an external voltage source. You can configure the actuation of inputs 1 to 5 for special control circuits and national circuit types. table 10 shows the various versions in dependence of the SR/SK microswitch. This switch is located to the right of the control signal terminals and has two switching contacts:

- SR = source, positive switching logic (default settings)
- SK = sink, negative switching logic

Figure 46: Position of microswitches

Caution!

Before you switch on the internal or external control voltage, check the position of the SR/SK switch. An incorrect setting can damage the control input.

Table 10: Actuation of inputs 1 to 5

Figure 47: Control signal terminal strip (part 2)

→ All analog inputs and outputs use terminal L as reference potential and are therefore also connected to the reference potential of digital inputs 1 to 5.

Terminal H outputs +10 V (max. 10 mA) to provide the reference voltage for supplying an external potentiometer. Reference point is terminal L.

Table 11: Actuating the analog inputs

→ At the default setting, the input signals at terminals O (0 to 10 V) and OI (4 to 20 mA) are added to the resulting frequency reference input. You can select the reference source with parameter PNU A005 (AT selection) and activate it through a control signal terminal (PNU C00x = 16). Terminal AM supplies an analog reference signal from 0 to +10 V (default = 0 to 50 Hz). The reference potential is terminal L. The analog signal can be configured with parameters PNU B080, C028 and C086.

Figure 48: Example: analog measuring instrument

If a relay is connected to one of the digital outputs 11 or 12, connect a freewheel diode in parallel to the relay to prevent destruction of the digital outputs through the self-induced e.m.f. which results when the relay is switched off.

Figure 49: Relay with freewheeling diode (for example ETS-VS3)

Use relays that switch reliably at 24 V --- and a current of about 3 mA.

The two digital outputs 11 and 12 contain optically decoupled open-collector transistors. Up to 50 mA can be applied to each of them. Their common reference potential is terminal CM2 (max. 100 mA).

Internal diode matrix R1 to R4 allows the connection in sink-type or source-type logic (\rightarrow fig. 51). Sink-type logic is the preferred connection method in Japan and the USA. Source-type logic is preferred in Europe, \rightarrow figure 49 and 50.

Figure 51: Digital outputs

4 Using the DF51

This section describes how to take the DF51 frequency inverter into operation and what you should observe during its operation.

Operational warnings

Warning!

If the supply voltage recovers after an intermittent failure, the motor may restart automatically if a start signal is still present. If personnel is endangered as a result, an external circuit must be provided which prevents a restart after voltage recovery.

Warning!

If the frequency inverter has been configured so that the stop signal is not issued through the OFF key on the LCD keypad, pressing the OFF key will not switch off the motor. A separate Emergency-Stop switch must be provided in this case.

凃

Warning!

Before carrying out maintenance and inspection work on the frequency inverter, wait at least five minutes after the supply voltage has been switched off. Failure to observe this point can result in electric shock as a result of the high voltages involved.

Warning!

Never pull on the cable to unplug connectors (for example for fan or circuit boards).

Caution!

If a reset is carried out after a fault, the motor will start again at once automatically if a start signal is applied simultaneously. To avoid the risk of serious or fatal injury to personnel, you must ensure that the start signal is not present before acknowledging a fault message with a reset.

Caution!

When the supply voltage for the frequency inverter is applied while the start signal is active, the motor will start immediately. Make sure therefore that the start signal is not active before the supply voltage is switched on.

Caution!

Do not connect cables or connectors during operation when the supply voltage is switched on.

7 Attention!

To prevent a risk of serious or fatal injury to personnel, never interrupt the operation of the motor by opening the contactors installed on the primary or secondary side.

→ The Start key is functional only if the corresponding parameters of the frequency inverter have been configured accordingly (→ section "Start/Stop signal", page 78). This prevents the risk of damage and injury.

→ If motors are to be operated at frequencies above the standard 50 or 60 Hz, consult the motor manufacturer to make sure that the motors are suitable for operation at higher frequencies. The motors could otherwise incur damage.

Block diagram

The following block diagram shows all terminals of the DF51.

Initial starting

Observe the following points before you take the frequency inverter into operation:

- The frequency inverter must be installed vertically on a nonflammable surface (for example a metal surface).
- Remove any residue from wiring operations such as pieces of wire and all tools from the vicinity of the frequency inverter.
- Ensure that all terminal screws have been sufficiently tightened.
- Make sure that the cables connected to the output terminals are not short-circuited or connected to earth.
- Make sure that the power lines L and N or L1, L2 and L3 and the frequency inverter outputs U, V and W are connected correctly.
- The earth terminal must be connected correctly.
- Only the terminals marked as earthing terminals must be earthed.

- The control lines must be connected correctly.
- Make sure that the frequency inverter and the motor are correct for the mains voltage.
- Check the position of the microswitches.
- Never operate the frequency inverter with opened power section covers (without fitted terminal shroud).
- The configured maximum frequency must match the maximum operating frequency of the connected motor.

7 Attention!

Do not carry out h.v. tests. Built-in overvoltage filters are fitted between the mains voltage terminals and earth, which could be destroyed.

→ Sparkover voltage and insulation resistance tests (megger tests) have been carried out by the manufacturer.

Figure 53: Default settings of microswitches

Table 12: Function of the microswitches

Switch	Function	Description, default setting	DS
SR/SK	SR	SR = source, positive switching logic. Activate by applying control voltage (+24 V)	SR
485/OPE	OPE	OPE = operator keypad (Optional: DEX-KEY-6, DEX-KEY-10)	OPE
TM/PRG	PRG	PRG = program In this switch position, the control signal and reference value sources set with PNU A001 (A201) and A002 (A202) are taken into account. In the default configuration, these are input values at the control signal terminals. In switch position TM (= control terminals) only control and reference value input signals are accepted through the control signal terminals, regardless of the value of PNU A001 and A002.	PRG

By default, the parameters of the DF51 frequency inverters are configured to fulfil the following requirements:

- Motor ratings: voltage, current and frequency of a normal, surface-cooled, four-pole three-phase asynchronous motor.
- Maximum speed: 1500 r.p.m. at 50 Hz (DF51-320: 1800 r.p.m. at 60 Hz).
- Acceleration and deceleration time = 10 seconds.

For settings for more complex applications, see the parameter list (page 230).

The basic versions of the DF51 frequency inverters contain an operating state LED.

Figure 54: Keypad

Table 13: LEDs

LED	Display	Explanation
POWER	Red	LED is lit when the frequency inverter has power.
ALARM	Red	LED is lit when an alarm message is issued.
RUN	Green	LED lit when frequency inverter operational (enable signal for clockwise/anticlockwise operation, terminal 1 or 2) or running.

Standard operation, actuation with default settings

Connect cables as shown below.

Figure 55: Active inputs at default setting

→ The Reset signal (RST function) is also issued when you switch the supply voltage off (POWER LED off).

→ By default, digital inputs 3 and 4 are set to the fixed frequency values 0 Hz , → section "Fixed frequencies" on page 93.

With the default settings (\rightarrow fig. 55) you can:

- start and stop the motor (S1 or S2).
- reverse the direction of rotation (S2 or S1).
- reset (RST) fault signals (ALARM).
- control the motor speed (0 to 50 Hz, or 0 to 60 Hz for DF51-320-...) with potentiometer R1 through the analog reference value input.

Switches and potentiometer are not included as standard with the frequency inverter.

The DF51 can supply the external reference potentiometer with a voltage of +10 V. The resistance should be between 2 k Ω and 10 k Ω . The recommended value is about 5 k Ω , which then applies about 2 mA to the supply voltage (terminal 5).

Switches S1 and S2 (digital inputs 1 to 5) should allow reliable contacting at extra-low voltage of +24 V).

During initial operation, check the following to prevent damage to the motor:

- Is the direction of rotation correct?
- Does a fault (ALARM LED) occur during acceleration or deceleration?
- Is the motor speed correct?
- Does any unusual motor noise or vibration occur?
- ► Switch on the supply voltage.

The POWER LED is lit.

► Close switch S1 (FWD = clockwise rotation).

The frequency inverter generates a clockwise rotating field and the motor, if connected normally, rotates in a clockwise direction.

- ► With potentiometer R1, you can change the frequency and therefore the motor speed.
- ► Open switch S1.

The motor speed is reduced to zero.

► Close switch S2 (REV = anticlockwise rotation).

The frequency inverter generates an anticlockwise rotating field and the motor, if connected normally, rotates in an anticlockwise direction.

- With potentiometer R1, you can change the frequency and therefore the motor speed.
- ► Open switch S2.

The motor speed is reduced to zero.

If both switches S1 and S2 are closed, the motor will not start. The motor speed reduces to zero during operation if you close both switches.

If a fault has occurred due to overcurrent or overvoltage, increase the acceleration or deceleration time. You can change the parameters through the built-in keypad, an optional external keypad (DEX-KEY-...) or the DrivesSoft parameterization software. The software is included on the CD-ROM supplied with the frequency inverter. To reset fault signals, close RST.

	Table 14:	Function of control	signal terminals	(inputs \rightarrow fig. 5	5)
--	-----------	---------------------	------------------	------------------------------	----

No.	Function	Level	DS	Technical data, description
L	Common reference potential	0 V	-	Reference potential for the internal voltage sources P24 and H
5	Digital input	HIGH: 17.4 27 V LOW: F 2 V	Reset	PNP logic, configurable, $R_i > 100 \text{ k}\Omega$ Reference potential: terminal L
2	Digital input		REV = anticlockwise rotating field	PNP logic, configurable, $R_i = 5.6 \text{ k}\Omega$ Reference potential: terminal L
1	Digital input		FWD = clockwise rotating field	
P24	Output control voltage	+24 V	-	Supply voltage for actuation of digital inputs 1 to 5. Load carrying capacity: 30 mA Reference potential: terminal L
Η	Output reference voltage	+10 V	-	Supply voltage for external reference value potentiometer. Load carrying capacity: 10 mA Reference potential: terminal L
0	Analog input	0 to +10 V	Frequency reference value (0 to 50 Hz)	$R_{\rm i} = 10 \ \rm k\Omega$ Reference potential: terminal L
L	Common reference potential	0 V	-	Reference potential for internal voltage sources P24, H and analog inputs

Using the DF51

Default functions of output terminals

By default, the control signal outputs have the functions described below.

Figure 56: Active outputs with default settings

(1) Frequency indication, 0 to 10 V = 0 to 50 Hz

AL fault message

③ FA1 = frequency reached (reference value = actual value) RUN = Run signal

Relay for direct connection to the digital outputs as shown in figure 56, for example ETS-VS3.

Table 15: Function of control signal terminals (outputs)

No.	Function	Value	DS	Technical data, description	
P24	Output control voltage	+24 V	-	Supply voltage connection Load carrying capacity: 30 mA Reference potential: terminal L	
12	Transistor output	Max. 27 V = CM2	00 = RUN: Run signal	Configurable, open collector	
11	Transistor output		01 = FA1: frequency achieved	Load carrying capacity: up to 50 mA each	
CM2	Reference potential, transistor output	0 V +24 V	_	Common reference potential for transistor outputs 11 and 12; max. load carrying capacity 100 mA (total of terminals 11 and 12) "Sink-type logic" connection: reference potential 0 V "Source-type logic" connection: reference potential +24 V (-> page 25)	
L	Common reference potential	0 V	-	Reference potential (0 V) for internal voltage source P24 and H, for analog inputs O and OI, and for analog output AM.	
AM	Analog output	0 to +9.6 V	Frequency actual value (0 to 50 Hz)	Configurable DC voltage output, 10 V corresponds with the set end frequency (50 Hz). Accuracy: ±5 % from final value Load carrying capacity: 1 mA Reference potential: terminal L	
K11	Relay contact	• Max. 250 V AC/2.5 A	05 = AL: fault signal	Operating signal: K11–K14 closed	
K12	Break contact	• Max. 30 V DC/3.0 A		Fault message or power supply off: K11-K12 closed	
K14	Make contact			ciosca	

Keypad

The illustration below shows the elements of the $\mathsf{DF51}\mathsf{'s}$ built-in keypad.

Figure 57: Keypad view

For an explanation of each of the elements, see table 16.

The Stop key B is active in all operating modes (\rightarrow PNU b087, page 135).

→ If frequency inverter DF51 is connected to a field bus (CANopen, PROFIBUS DP) or an external keypad through the serial interface, the keys are disabled, except for the Stop key.

Table 16: Explanation of the operation and display elements	Table 16:	Explanation of the ope	eration and display	elements
---	-----------	------------------------	---------------------	----------

Number	Designation	Explanation
1	Four-digit digital display	Display for frequency, motor current, PNU, fault messages, etc.
2	LED Hz or A	Display in a: output frequency (Hz) a PNU d001 (DS) or output current (A) → PNU d002.
3	RS 485	Serial interfaces RS 485 and Modbus RT
4	POWER LED	LED is lit when the frequency inverter has power.
5	ALARM LED	LED is lit when a fault signal occurs.
6	RUN LED	LED lit in RUN mode when the frequency inverter is ready for operation or is in operation.
1	PRG LED	LED is lit when the input/change of parameter mode is active.
8	Potentiometer and LED	Frequency reference value setting LED is lit when the potentiometer is enabled \rightarrow PNU A001 = 00.
9	ENTER key	Saving entered or changed parameters values.
10	Arrow keys	Selecting functions, changing numeric values Increase Reduce
(1)	PRG key	Programming mode. Selection and activation of the specified parameter (PNU).
12	Start key and LED	Motor start with the selected direction; disabled by default. LED is lit when the key is enabled \rightarrow PNU A002 = 02.
(3)	Stop key	Stop the running motor and acknowledge a fault signal (RST = Reset). Active by default, also when actuation is through terminals.

DS = default setting

PNU = parameter number

Using the DF51

Menu overview

The illustration below shows the structure of the parameter levels.

Press the PRG key to change to parameterization mode.

In parameterization mode, the keys have the following functions:

- Use the PRG key to change the display between main menu, parameter and value range.
- To scroll through the individual parameters, digits and functions, use the Up and Down arrow keys.
- To save your settings, press the ENTER key.
- → The changes you make remain saved (in non-retentive memory) as long as the frequency inverter DF51 is supplied with power (POWER LED is lit). The changes are saved permanently (in EEPROM) only when you press the ENTER key.

Figure 58: Parameter structure

- ① Change between the four-position digital display and the display parameters
- ② Select the display parameter
- $(\ensuremath{\mathfrak{I}})$ Selection in the main menu
- 4 Select the basic parameter
- $(\mathbf{5})$ Change between main menu and the parameter level

- 6 Select a parameter (PNU)
- O Change between parameters (PNU) and value range
- (8) Select in value range (digits 0 to 9, functions)
- (9) Save values and return to parameter (PNU)
- 10 Return to main menu

Quick parameter selection

- With the PRG key, change to parameterization mode (4-digit parameter indication, for example d001).

The quick selection mode is now selected. The first digit of the digital display flashes.

► To select the required parameter range (A, b, C, d, F or H), press one of the arrow keys (^ or `). The corresponding letter appears in the main menu.

Figure 59: 7-segment display

- To change to the second, third and fourth digit of the display, press the Enter key each time. The active digit flashes in each case.
- ► To change the value of the active digit (0 to 9), use the arrow keys (^ or ~).
- ▶ When you press Enter again after the fourth digit, the entered parameter is called up.

If the number you have entered does not exist, the last valid PNU is selected again when you press the Enter key.

► To go back to the last valid PNU from the first digit, press the PRG key.

Setting the display parameters

By default, the digital display indicates the output frequency (Hz LED is lit). The following section lists the other operational data that can be displayed.

- You can call up the parameters of the display menu (d...) in both RUN- and STOP mode.
- The selected display parameter (d..., PNU) is automatically saved in the event of a mains power failure or disconnection and is displayed again when power is restored.

If the PNU value you have selected is to be shown again the next time the device is switched on, press the ENTER key to save it before switching off.

- Press the PRG- key. The display indicates PNU d001 (output frequency).
- ► To change to the next display parameter (PNU d002 = motor current) press the arrow key

When you have selected a display parameter (d...), press the PRG key, to display that parameter's value. Parameter and selected indication are not saved. To save the display parameter (d...) (not the selected indication), press first the ENTER key and then PRG. To save the display form, press first the PRG key and then ENTER.

Display parameters d080 to d083 show the identified faults. For each fault signal a fault register entry containing the operational data at the time of the fault (current, voltage, frequency, etc.) is created. You can call up the fault register with the PRG key and the associated operational data with the arrow keys (\rightarrow section "Fault signal register", page 182).

Table 17: Indication parameter

PNU	Designation	Function
d001	Output frequency display	Displays the output frequency in Hertz (Hz). The Hz LED is lit.
d002	Output current display	Displays the output current in amperes (A). The A LED is lit.
d003	Direction of rotation display	Display: • F for clockwise operation (forward) • r for anticlockwise operation (reverse) • o for stop
d004	PID feedback display	Indication in % if PID control enabled. The factor is set with PNU A075. Default is 0.00.
d005	Indication – status of digital inputs 1 to 5	Example: Digital inputs 1, 3 and 5 are activated. Digital inputs 2 and 4 are deactivated. Digital inputs 2, 4 and 6 are disabled.
d006	Indication – status of digital outputs 11 and 12, and relay K1	Example: Digital output 11 and relay output (N/O contact K11-K14) are enabled. Digital output 12 is deactivated.
d007	Indication — scaled output frequency	 Indication of the product of the factor (PNU b086) and the output frequency. Examples: Maximum output frequency 50 Hz Factor PNU b086 = 25 Indication 1500, corresponds with the synchronous speed of a four-pole motor.
d013	Indication – output voltage	Indication of motor voltage at 50 Hz in volts (V).
d016	Indication – operation time counter	Total time in hours in which DF51 is in RUN operation.
d017	Indication – mains On time	Total time in hour in which DF51 was live (mains, internal DC link) (Power display).
d080	Indication – total number of occurred faults	Total number of detected fault signals (E).
d081	Indication – fault 1 (last fault signal)	Indication of last fault signal. The fault register contains the operational data (current, voltage, frequency, etc.) at the time of the fault.
d082	Indication – fault 2	Display of fourth from last fault message. The fault register contains the operational data (current, voltage, frequency, etc.) at the time of the fault.
d083	Indication – fault 3	Display of third from last fault message. The fault register contains the operational data (current, voltage, frequency, etc.) at the time of the fault.

If the DF51 frequency inverter is connected to a field bus (CANopen, PROFIBUS-DP) or an external keypad through the serial interface, use PNU b89 to call up the display parameters (section "Displayed value (selection with PNU b089)", page 147).

Examples for changing parameters

The following example assumes the default settings.

Changing the acceleration time 1: PNU F002

The frequency inverter is in display mode: LED POWER is lit and the display shows 0.0 Hz (1).

Figure 60: Change acceleration time 1

- (1) Display value (default setting = 0.0 Hz)
- (2) Parameter holding the displayed value (1)
- ▶ Press the PRG key.

The display changes to d001.

- Press the Down key seven times until F002 appears on the display.
- ▶ Press the PRG key.

The PRG LED lights up.

The set acceleration time 1 in seconds appears on the display (default value: 10.00).

► With the Up and Down arrow keys change the set values, for example to 5.00.

Hold the Down key to change the display value at logarithmically increasing step widths.

There are now two possibilities:

► Press the ENTER key to save the displayed value. Press the PRG key to save the displayed value to non-retentive memory. When the power supply is switched off (LED POWER off), the value is lost.

F002 appears in the display and the LED PRG goes out.

- ▶ Press the Up key seven times until 0001 appears.
- ▶ Press the PRG key.

The value **Q . Q** appears again in the display and the Hz LED lights up. You have reduced the acceleration time from 10 s to 5 s.

You can also change the parameter values of groups B and C and H as described in the example.

Changing the end frequency: PNU A004

- ▶ Press the PRG key.
- Press the Down key until the main menu A--- shows in the display.
- Press the PRG key.

The display shows A001.

- ▶ Press the Up key until A004 shows in the display.
- Press the PRG key.

The PRG LED lights up. The value set under PNU A004 appears in the display (default value: 50).

► With the Up and Down arrow keys change the set values, for example to 60 Hz.

As this is a limited operating parameter, you must press the ENTER key to accept it. If you press the PRG key, the new value is discarded.

The display shows A004.

- ▶ Press the PRG key until A--- shows in the display.
- ▶ Press the Up key until d001 shows in the display.
- ▶ Press the PRG key.

The frequency inverter changes to $\overline{@}$, $\overline{@}$ Hz. You have now set the end frequency to 60 Hz, i.e. the previous reference value of 0 to 50 Hz now corresponds with 0 to 60 Hz. At50 Hz (PNU A003) the maximum output voltage is reached. Between 50 Hz and 60 Hz only the output frequency, and therefore the motor's speed change.

Figure 62: Change end frequency (example with default setting)

① Display value 0.0 Hz

(2) Parameter holding the displayed value (1)

Self-adhesive parameter list and fault messages

The self-adhesive foil included as standard provides an overview of the most commonly used parameters and some of the most important fault messages. The foil consists of two parts and can be applied, for example, to the inside of the terminal shroud. The parameter descriptions are given in English. For an explanation, see table 18.

	MONITOR	
Image: Contract of the second seco	<i>d 🛛 8 1</i> Trip monitor 1	
Image: Contract state Image: Contract state Image: Contract state Image: Contract state	3 3 8 2 Trip monitor 2	
Image: Book of the second seco	883 Trip monitor 3	
BASIC	FUNCTION	ERROR
F [] [] I Output frequency	RDD I Frequency source	E I / Overcurrent (Const.)
F D D 2 Acceleration time	Run command source	E C 2 Overcurrent (Decel.)
F [] []] Deceleration time	R D D B Base frequency	E G B Overcurrent (Accel.)
F D D H Sense of rotation FWD/RE	V ROOY Maximum frequency	E CS Overload
For the other discription of Monitor/	Setting, see manual	E C Overvoltage
USER SETTING		E G P Undervoltage
		E I H Ground fault
		E 2 / Thermal TRIP

Figure 63: Adhesive foil in two parts

Table 18: Brief description of the parameters

MONITOR		Display values	USER SETTING Preset user values
d001	Output frequency	Output frequency in Hz	
d002	Output current	Output current in A	
d080	Trip counter	Total number of occurred faults	
d081	Trip monitor 1	First fault (last fault warning)	
d082	Trip monitor 2	Second fault	
d083	Trip monitor 3	Third fault	
BASIC FUN	ICTION	Basic functions	
F001	Output frequency	Frequency reference value	
F002	Acceleration time	Acceleration time 1	
F003	Deceleration time	Deceleration time 1	
F004	Sense of rotation FWD/REV	Direction of rotation	
A001	Frequency source	Reference frequency input	
A002	Run command source	Start signal input	
A003	Base frequency	Base frequency	
A004	Maximum frequency	End frequency	
ERROR		Error messages	
E01	Overcurrent (Const.)	Overcurrent in the power output element in static oper	ration
E02	Overcurrent (Decel.)	Overcurrent in the power output element during the de	elay
E03	Overcurrent (Accel.)	Overcurrent in the power output element during the ad	cceleration
E05	Overload	Overload	
E07	Overvoltage	Overvoltage	
E09	Undervoltage	Undervoltage	
E14	Ground fault	Ground fault	
E21	Thermal trip	Overtemperature	

Reference value and control signal input

The following example compares the input of control signals (FWD = Start/Stop) and the frequency reference value (R1) using keypad and the standard connection (\rightarrow figure 64).

Figure 64: Comparison: standard operation through control signal terminals (default) and through LCD keypad

The figure below shows the programming steps required to enable the potentiometer and the start key on the keypad. The assigned green LED lights up to indicate activation.

Microswitch TM/PRG must be in its PRG position and 485/OPE in its OPE position.

With these parameters the DF51 frequency inverter can be operated through the control signal terminals without commands.

With the RUN key, a clockwise rotating field (FWD) is output by default.

Figure 65: Reference values and control signals via keypad

04/07 AWB8230-1541GB

5 Setting parameters

You can adapt the DF51 to your specific applications. To do this, you need to change the frequency inverter's parameters with the built-in keypad, the optional keypads DEX-KEY-... or the Drives-Soft configuration software.

Table 19: Devices for changing parameter settings

Part no.	Designation	Further optional accessories		
DrivesSoft	Parameterization software, executable on PCs with Windows operating system. A CD is supplied with every DF51.	DEX-CBL-2M0-PC, prefabricated connecting cable with interface converter		
DEX-KEY-6	Keypad with digital display assembly and potentiometer. DEX-KEY-6 can be fitted externally.	DEX-CBLICS, prefabricated connecting cable with RJ 45 plug.		
DEX-KEY-61	Keypad with digital display assembly. DEX-KEY-61 can be fitted externally.	DEX-MNT-K6, mounting rack, for example for flush mounting in a control panel door.		
DEX-KEY-10	External keypad with non-volatile parameter memory (copy function) and a backlit two-section LCD display. For notes about handling and parameterization, see manual AWB8240-1416	DEX-CBLICS, prefabricated connecting cable with RJ 45 plug.		

This section lists the adjustable parameters.

For a clear overview, the parameters and settings are grouped according to their respective functions.

PNU = parameter number displayed on the LCD keypad.

RUN = access rights to parameters in RUN mode (RUN LED is lit):

b031 = 10 = extended access rights to parameters in RUN mode (RUN LED is lit):

- \checkmark = enabled.
- - = disabled.

→ The parameter numbers of the second parameter set (PNU x2xx) always start with a "2" and are shown with a grey background in the table . On the keypad they are displayed only when this function is enabled (→ PNU C001 = 08: SET).

PNU	Designation	RUN	b031 = 10	Value	Function	DS
		-	-		Parameters can not be changed in RUN mode (RUN LED is lit).	
		\checkmark	-		Parameters can be changed in RUN mode (RUN LED is lit).	
		-	✓		Access rights for this parameter have been extended to include RUN mode (\rightarrow PNU b031= 10, \rightarrow section "Parameter inhibit (PNU b031)", page 139).	

Motor data

The motor's ratings plate contains the data you will need to parameterize the frequency inverter.

Figure 66: Parameters from motor's ratings plate

→ Note about PNU H004/H204:

The number of poles is determined by the motor's physical design and must be even as the poles are arranged in pairs consisting of a North and a South pole.

The motor speed is determined by the relationship between frequency and rotor speed:

$$n = \frac{f}{p}$$

$$n: \text{ Speed [r.p.m.]}$$

$$f: \text{ Frequency [Hz]}$$

$$p: \text{ Number of pole pairs (number of poles/2)}$$

In the above example, the resulting value for PNU H004 is 4. (The slight error is caused by the slip – a deviation between stator field and rotor speed – inherent to asynchronous motors.)

$$p = \frac{f}{n} = \frac{50 \text{ Hz} \times 60 \frac{1}{\text{ Hz x}}}{1430 \text{ r.p.m.}} \approx 2$$

Number of poles = $p \times 2 = 4$

PNU	Designation	RUN	b031 = 10	Value	Function	DS
H003 H203	Motor – assigned rating [kW]/{HP} at rated voltage (U _e)	-	-	0.2; 0.4; 0.55; 0.75; 1.1; 1.5; 2.2; 3.0; 4.0; 5.5; 7.5; 11.0 {0.2; 0.4; 0.75; 1.5; 2.2; 3.7; 5.5; 7.5; 11.0} Default depends on rated voltage and type rating.	The default setting (DS) is the assigned motor rating here, for example 0.4 = 0.37 kW. The connected motor rating should be only one order lower (for example 0.25 kW connected to a DF51037). If the connected load is too small, the motor may suffer thermal overload.	-
H004 H204	Motor – number of poles	-	-	2, 4, 6, 8	Number of motor poles (\rightarrow Note)	4
H006 H206	Motor – stabilization constant	✓	✓	0255	0 = function is not enabled If the motor runs unstably, you can improve its operation with PNU H006. Check first whether the set motor rating (PNU H003) and number of poles (PNU H004) correspond with the connected motor. If the motor's rating is higher than the frequency inverter's output power, reduce the stability constant. If the motor is not running smoothly, you can also reduce the pulse frequency (PNU b083) or change the output voltage (PNU A045).	100

Motor control

U/f characteristic

With a linear *Ulf* characteristic the ratio of output voltage to output frequency remains linear in the range from 0 Hz to the rated frequency (PNU A003, \rightarrow page 68) \rightarrow constant torque curve. This facilitates constant load torques also during acceleration and deceleration.

In the range from the motor's rated frequency (PNU A003) up to the manufacturer's specified maximum frequency (speed, PNU A004 \rightarrow page 68), the output voltage remains constant as the frequency increases.

If you select the square-law torque curve, the U/f ratio changes in a square-law pattern. This results in a reduced starting torque in the lower frequency/speed range.

Examples:

a Linear U/f characteristic:

- for parallel operation of several motors at the frequency inverter's output.
- for changeovers at the frequency inverter's output.
- when operating motors with a low rating.

Figure 67: PNU A044 = 00, constant torque characteristic

- *f*₁: Transition frequency, motor rated frequency (H004)
- f₂: End frequency, highest permissible motor frequency

b Quadratic U/f characteristic:

• Energy-optimized operation of pumps, fans, etc.

• Application requiring a reduced starting torque.

Figure 68: PNU A044 = 01, square-law torque characteristic

- f_1 : Transition frequency, motor rated frequency (H004)
- f₂: End frequency, highest permissible motor frequency

Limit and target values

Base frequency

The base frequency is the frequency at which the output voltage has its maximum value. For standard applications, PNU A003 contains the motor's rated frequency as base frequency (\rightarrow section "Motor data", page 66).

*f*₁: Base frequency

End frequency

If a constant-voltage frequency range exists beyond the transition frequency set with PNU A003 define this range with PNU A004. The end frequency must not be smaller than the base frequency.

Figure 70: Base and end frequency

*f*₁: Base frequency

 f_2 : End frequency

PNU	Designation	RUN	b031 = 10	Value	DS
A003 A203	Base frequency	-	-	30 to 400 Hz, up to value of PNU A004 [Hz] (motor's rated frequency)	50 {60}
A004 A204	End frequency (fmax)	-	-	30400 Hz	50 {60}

1) 60 for DF51-320-...

Increased starting frequency

For applications with high static friction (such as conveyor belts and hoists), you can increase the starting frequency with PNU 082. The motor then starts directly with the frequency value set here.

Figure 71: Increased starting frequency

→ Analog reference values below the response threshold are not taken into account.

Example:

0 to 10 V correspond with 0 to 50 Hz. PNU b082 = 5 Hz. The reference value range is 1 to 10 V.

The RUN signal is activated with the value set in PNU b082. It remains active as long as a frequency of or above this value is applied.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b082	Increased starting frequency (e.g. at high static friction)	_	√	0.59.9 Hz	A higher starting frequency results in shorter acceleration and deceleration times (for example to overcome high frictional resistance). Up to the set starting frequency, the motor accelerates without a ramp function. If the frequencies are too high, fault message E002 may be issued.	0.5

Automatic voltage regulation (AVR)

The AVR function stabilizes the motor voltage if there are fluctuations on the DC bus voltage. These deviations result from, for example:

- unstable mains supplies or
- DC bus voltage dips or peaks caused by short acceleration and deceleration times.

A stable motor voltage provides a high level of torque, particularly during acceleration.

Regenerative motor operation (without AVR function) results in a rise in the DC bus voltage in the deceleration phase (particularly at very short deceleration times), which also leads to a corresponding rise in the motor voltage. The increase in the motor voltage causes an increase in the braking torque. For deceleration, you can therefore deactivate the AVR function under PNU A081.

If the mains voltage is higher than the rated motor voltage, enter the mains voltage under PNU A082 and, under PNU A045 reduce the output voltage to the rated motor voltage (\rightarrow page 70).

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A081	Output voltage (AVR function)	-	-	00	AVR enabled	00
				01	AVR disabled	
				02	AVR disabled during deceleration	
A082	Output voltage (AVR motor rated voltage)	-	-	200, 215, 220, 230, 240, 380, 400, 415, 440, 460, 480	 200 V range DF51-32 200, 215, 220, 230, 240 400 V range DF51-340: 380, 400, 415, 440, 460, 480 	230/4 00

Output voltage and voltage boost

If the mass inertia moment or static friction of the connected load is high, the output voltage must be increased (boosted) beyond the normal *U*/*f* component at low output frequencies. This compensates for the voltage drop in the motor windings and can be up to half of the motor's nominal voltage. The voltage boost is defined as a percentage value with parameters PNU A042 and A043.

Operation at low speeds over a longer period can cause overheating of the motor. If the boost value is too high, the resulting higher current may cause a fault signal.

PNU A041 lets you select between a manual boost characteristic (PNU A041 = 00) and automatic voltage boost (PNU A041 = 01. Automatic voltage boost is added to the U/f characteristic value depending on the current load (determined by current measurement).

Figure 72: Voltage boost characteristics Parameter settings for manual voltage boost: A042 = 20 % of the output voltage A043 = 10 % of 50 Hz (A004) = 5 Hz A044 = 00 (constant torque characteristic) A045 = 100 % (output voltage = mains voltage)

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A041	Voltage boost	\checkmark	\checkmark	00	Manual voltage boost	00
A241	characteristics			01	Automatic voltage boost	
A042 A242	Boost, manual voltage boost	~	✓	020 %	Setting the voltage increase with manual boost.	1.8
A043 A243	Boost, transition frequency for maximum voltage boost	✓	✓	050 %	Setting the frequency with the highest voltage boost as a percentage of the base frequency (PNU A003).	10
A044	U/f	-	-	00	Constant torque curve	00
	characteristic			01	Reduced torque curve	
A045	<i>Ulf</i> characteristic – output voltage	-	-	20100 %	U [%] 100 20 0 20 0 4 4045 100 	100
A245					If the rated motor voltage is lower than the mains voltage, enter the mains voltage in PNU A082 (\rightarrow page 69) and reduce the output voltage in PNU A045 to the rated motor voltage. Example: At 440 V mains voltage and 400 V rated motor voltage enter: PNU 082 = 440 V, PNU A045 = 91 % (= 400/440 × 100 %).	

Reference and control signal inputs

→ Reference value and control signal inputs depend on PNU A001 and A002 and the position of microswitches 485/OPE and TM/PRG.

Microswitch 485/OPE configures the serial interface (RJ 45 communication interface):

Position 485/OPE	Description	Reference and control signal input
485 (RS 485)	Serial interface	DEX-KEY-6 keypad
		DEX-KEY-61 keypad
		Modbus RTU (network)
OPE	Manual operation	DEX-KEY-6 keypad ¹⁾
(operator)	(point-to-point connection)	DEX-KEY-61 keypad ¹⁾
	connectiony	DEX-KEY-10 keypad ¹⁾
		DrivesSoft parameterization software

1) To ensure unrestricted communications, set the switch to position 485.

Microswitch TM/PRG selects the source of the reference value and control signal input.

Position TM/PRG	Description	Reference and control signal input
PRG (program)	Reference input for output frequency	Specification according to setting under PNU A001
	Start (RUN) signal input	Specification according to setting under PNU A002
TM (terminal = control	Reference input for output frequency	Analog input O or OI
signal terminals)	Start (RUN) signal input	Digital inputs FWD and/or REV

By default (PNU A001 = 01 and A002 = 01) the setpoint and command input takes place through the control signal terminals, regardless of the switch positions of microswitch TM/PRG.

The reference source is selected with PNU A001. It can be assigned in one of three ways:

- Through analog inputs O (0 to +10 V ----) and/or OI (4 to 20 mA ----).
- Through the LCD keypad's potentiometer.
- Through digital channels
 - PNU F001, → page 73
 - Fixed frequencies f-Fix1 to f-Fix15, \rightarrow page 93
 - − Modbus, → page 159.

Figure 74: Block diagram, reference value/control signal input

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A001	Reference value source selection	_	_	00	 The setting range is limited by PNU b082 (raised starting frequency) and A004 (end frequency). Potentiometer (keypad) Frequency [Hz] Process variable [%] with active PID control (PNU A071 = 1) 	01
				01	Analog input: control signal terminals O and OI	
				02	Set value (PNU F001) of the keypad (arrow keys 1). To save the set value, press the ENTER key (PNU A020).	
				03	Serial interface (Modbus)	
				10	Calculator: Calculated value (CAL) (\rightarrow section "Mathematical functions", page 123).	
A002	Start signal	-	_	01	Digital input (FWD/REV)	01
A202	source	02 LCD keypad: START and STOP key.	LCD keypad: START and STOP key.			
	selection			03	Modbus: Activates a COIL for RUN/STOP and a COIL for FWD/REV.	

Higher-priority control signals allow the reference source selected with PNU A001 (F-COM) to be temporarily exceeded.

Example: When a fixed frequency (CF1 to CF4) is activated, the analog reference value of control signal terminals O or OI is overwritten.

Priority	Reference input source	Description (page)
1 (highest)	Fixed frequency FF1 to FF4	93
2	Digital input = 31 (OPE)	98
3	Digital input = 51 (F-TM)	98
4	Digital input = 16 (AT)	87
5	Microswitch TM/PRG in position TM	51
6 (lowest)	PNU A001	81

The starting signal selected with PNU A002 (OPE mode) can also be temporarily overwritten with higher-value control signals:

Priority	Source for Start (RUN) signal	Description (page)
1 (highest)	Digital input = 31 (OPE)	98
2	Digital input = 51 (F-TM)	98
3	Microswitch TM/PRG in position TM	51
4 (lowest)	PNU A002	72

Basic parameters

Input/indication of frequency reference value

PNU F01 always indicates the current reference frequency. By default, this is the analog reference value for control signal terminals O and OI (PNU A01 = 01). With PNU A01 = 02 you can specify the reference frequency directly with the arrow keys $\sim l \sim$.

The set value is automatically written to PNU A020. There you can change the value with arrow keys \sim / \sim and confirm it with the Enter key. You can save additional reference frequencies in PNU A021 to PNU A035 and call them up through the control signal terminals \rightarrow section "Fixed frequencies", page 93.

- → If one or more of the fixed frequencies exceeds 50 Hz, you must first increase the end frequency with PNU A004 (→ section "End frequency", page 70).
- → With PNU F001, you can change the reference value even when parameter protection has been set with PNU b031. Micro switch TM/PRG must be in the TM position.

Figure 75: TM microswitch

If you have not activated any fixed frequencies, PNU F01 indicates the set reference frequency.

If you specify the reference frequency with PNU A020, you can enter a new value under PNU F001, which is saved automatically in PNU A020:

- ► Change the current value with the arrow keys.
- ► Save the modified value with the ENTER key.

The saved value is automatically written to PNU A020.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
F001	Reference value, input through keypad	~	~	Frequency: 0.0400 Hz (0.1 Hz)	 Resolution ±0.1 Hz The reference value can be defined using various methods: With PNU F001 or A020: Enter the value 001 under PNU A02. With the potentiometer on the keypad: Enter the value 00 under PNU A01. With a 0 to 10 V voltage signal or a 4 to 20 mA current signal at analog input 0 or OI: Enter the value 01 under PNU A01. With the digital inputs configured as FF1 to FF4. After selection of the required fixed frequency stage using FF1 to FF4, the frequency for the respective stage can be entered. The display of the reference value is independent of which method was used to set the reference value. 	0.0

Acceleration and deceleration time

Figure 76: Acceleration/deceleration ramps

Acceleration time 1

Acceleration time 1 defines the time in which the frequency inverter reaches its end frequency after a start signal is issued.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
F002 F202	Acceleration time 1	√	✓	0.01 3000 s	Resolution of 0.01 s at an input of 0.01 to 99.99 Resolution of 0.1 s at an input of 0.1 to 999.9 Resolution of 1 s at an input of 1000 to 3000	10.00

Deceleration time 1

Deceleration time 1 defines the time in which the frequency inverter reduces the output frequency from the end frequency to 0 Hz after a stop signal.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
F003 F203	Deceleration time 1	✓	√	0.013600 s	Resolution of 0.01 s at an input of 0.01 to 99.99 Resolution of 0.1 s at an input of 100.0 to 999.9 Resolution of 1 s at 1000 to 3600 s	10.00

→ Deceleration times that are set too low cause an increased DC link voltage (regenerative braking) and can cause a shutdown with fault message E07.

Direction of rotation

The direction of rotation defines the direction in which the motor turns after a start signal is issued.

PNU	Designation	RUN	b31 = 10	Function	DS
F004	Direction of rotation –	\checkmark	\checkmark	00: Clockwise rotating field (FWD)	00
	function of Start key (keypad)			01: Anticlockwise rotating field (REV)	

Acceleration and deceleration characteristic

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A097 Acceleration time, characteristic				Here, you can set a linear or an S-curve acceleration characteristic for motor acceleration first and second time ramp): $f = \underbrace{f_{00}}_{01}$		
				00	Linear	
				01	S curve	
A098	Deceleration	-	-	00	Linear	00
	time, characteristic			01	S curve	

Control signal terminal overview (input)

table 20 provides an overview of the digital and analog control signal terminal inputs. For a detailed description of each function, see from page 106.

Table 20:	Brief description of the function	ons (digital and anal	og inputs)

Designation	Value 1)	Meaning	Description
Parameteriza	ble digital	inputs 1 to 6	Parameterizing PNU C001 to C006
FWD	00	Clockwise rotation (RUN/STOP)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} f \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
REV	01	Anticlockwise rotation (RUN/STOP)	FWD input closed: Motor starts up with a clockwise rotating field.FWD input open: Controlled motor deceleration to stop (clockwise rotating field).REV input: As for FWD, but with anticlockwise rotating fieldFWD and REV inputs closed simultaneously: Motor does not start or controlled motor deceleration to stop.

1) To activate the function, enter this value in the corresponding parameter.

FF1 02 Programmable fixed frequencies 1 to 4, bit 0 Example: Four fixed frequencies 1 to 4, bit 0 FF2 04 (ISB) to bit 3 (MSB) Image: Four fixed frequencies 1 to 4, bit 0 Image: Four fixed frequencies 1 to 4, bit 0 FF3 04 Image: Four fixed frequencies 1 to 4, bit 0 Image: Four fixed frequencies 1 to 4, bit 0 FF4 05 Image: Four fixed frequencies 1 to 4, bit 0 Image: Four fixed frequencies 1 to 4, bit 0 FF4 05 Image: Four fixed frequency stage: three programmable fixed frequencies plus reference value), two fixed frequencies plus reference value, two fixed frequencies plus reference value, two fixed frequencies 1 to 4, bit 0 FF4 05 Image: Four fixed frequency stage: three programmable fixed frequencies plus reference value, two fixed frequencies plus reference value, the fixed value plus relation to the fixed value plus relation to the plus relation to the plus relation to the fixed value plus relation to the fixed value plus relation to the fixed value plus relation to the plus relatis the f	Designation	Value 1)	Meaning	Description
rr203 FF303 O4 $\frac{1}{16} = \frac{1}{16}$	FF1	02		
FF3D4D4FF3D4 $\frac{1}{12}$ $\frac{1}{$	FF2	03	(LSB) to bit 3 (MSB)	
Instant<	FF3	04		FF1 FF2 FF2 FF2 FF2 FF2 FF2 FF3 FF3
Bit State a machine in manual mode. When a stat signal is received, the frequency programmed under PNU A038 is applied to the motor. Under PNU A039, you can select one of three different operating modes for stopping the motor. DCB 07 DC braking After the DCB input has been enabled, DC braking is carried out. SET 08 Selection of second parameter set Switching on SET allows you to select the second parameter set for reference frequency, torque parameter set 2CH 09 Second time ramp Activates the second acceleration and deceleration irramp and other functions. Parameters in the second parameter set are identified by a leading "2", e.g. PNU A201. 2CH 09 Second time ramp Activates the second acceleration and deceleration irramp and other functions. Parameters in the second parameter set in stop) FRS 11 Controller inhibit (free run stop) is switched on, the motor is immediately switched off and coasts to a stop. EXT 12 External fault message When the EXT input is switched on, unattended start protection is active. This prevents a motor restart when the voltage recovers after a mains failure while a start signal is present. SFT 15 Parameter access inhibit The parameter protection, which is activated by switching on the SFT input, prevents loss of the entered parameters by inhibiting write operations to these parameters. AT 16 Reference input OI (4 to 20 mA) active When the AT input is active, only the reference value input OI (4 to 20 mA) active STA	FF4	05		
SET 08 Selection of second parameter set Switching on SET allows you to select the second parameter set for reference frequency, torque boot, first and second acceleration/deceleration ramp and other functions. Parameters in the second parameter set are identified by a leading "2", e.g. PNU A201. 2CH 09 Second time ramp Activates the second acceleration/deceleration ime with PNU A092 and PNU A093 respectively. RFS 11 Controller inhibit (free run stop) When FRS (free run stop) is switched on, the motor is immediately switched off and coasts to a stop. The fault signal can be acknowledged, for example, with the RST input. USP 13 Unattended start protection When the USP input is switched on, unattended start protection is active. This prevents a motor restart when the voltage recovers after a mains failure while a start signal is present. SFT 15 Parameter access inhibit The parameter protection, which is activated by switching on the SFT input, prevents loss of the entered parameters by inhibiting write operations to these parameters. AT 16 Reference input 01 (4 to 20 mA) active Control, direct on for a dro. Only digital input 5 can be programmed as a PTC thermistor input with PNU CO05. Use terminal L as the reference potential. STP 21 Three-wire control, Stop signal Three-wire control, Stop signal Ext Start Stop Stop Stop Stop Stop Stop Stop Sto	JOG	06	Jog mode	a machine in manual mode. When a start signal is received, the frequency programmed under PNU A038 is applied to the motor. Under PNU A039, you can select one of three different operating
parameter setboost, first and second acceleration/deceleration ramp and other functions. Parameters in the second parameter set are identified by a leading "2", e.g. FNU A201.2CH09Second time rampActivates the second acceleration and deceleration time with PNU A021 and PNU A031 respectively.FRS11Controller inhibit (free run stop)When FRS (free run stop) is switched on, the motor is immediately switched off and coasts to a stop. run stop)EXT12External fault messageWhen the EXT input is switched on, the fault signal activates PNU E012 and the motor switches off. The fault signal can be acknowledged, for example, with the RST input.USP13Unattended start protectionWhen the USP input is switched on, unattended start protection is active. This prevents a motor restart when the voltage recovers after a mains failure while a start signal is present.SFT15Parameter access inhibit 20 mA) activeThe parameter protection, which is activated by switching on the SFT input, prevents loss of the entered parameters by inhibiting write operations to these parameters.RST18ResetTo acknowledge an error message, switch on the RST input. If a reset is initiated during operation, the motor coasts to a stop. The RST input is a make (NO) contact; it cannot be programmed as a gignalSTA20Three-wire control, Stop signalIntere-wire control, Stop signalF/R22Three-wire control, Stop signalIntere-wire control, Stop signalF/R22Three-wire control, Stop signalIntere-wire control, Stop signalF/R22Three-wire control, Stop sign	DCB	07	DC braking	After the DCB input has been enabled, DC braking is carried out.
FRS 11 Controller inhibit (free run stop) When FRS (free run stop) is switched on, the motor is immediately switched off and coasts to a stop. EXT 12 External fault message When the EXT input is switched on, the fault signal activates PNU E012 and the motor switches off. The fault signal can be acknowledged, for example, with the RST input. USP 13 Unattended stat protection When the USP input is switched on, unattended stat protection is active. This prevents a motor restart when the voltage recovers after a mains failure while a start signal is present. SFT 15 Parameter access inhibit The parameter protection, which is activated by switching on the SFT input, prevents loss of the entered parameters by inhibiting write operations to these parameters. AT 16 Reference input OI (4 to 20 mA) active To acknowledge an error message, switch on the RST input if a reset is initiated during operation, the motor coasts to a stop. The RST input is a make (NO) contact; it cannot be programmed as a break (NC) contact. PTC 19 Connection for a PTC signal Olly digital input 5 can be programmed as a PTC thermistor input with PNU C005. Use terminal L as the reference potential. STA 20 Three-wire control, Stop signal Impre-wire control, stop signal Impre-wire control, stop signal Impre-wire control, stop signal F/R 22 Three-wire control, direction of rotation Impre-wire control, stop	SET	08		boost, first and second acceleration/deceleration ramp and other functions. Parameters in the
run stop)run stopEXT12External fault messageWhen the EXT input is switched on, the fault signal activates PNU E012 and the motor switches off. The fault signal can be acknowledged, for example, with the RST input.USP13Unattended start protectionWhen the USP input is switched on, unattended start protection is active. This prevents a motor restart when the voltage recovers after a mains failure while a start signal is present.SFT15Parameter access inhibitThe parameter protection, which is activated by switching on the SFT input, prevents loss of the entered parameters by inhibiting write operations to these parameters.AT16Reference input OI (4 to 20 mA) activeWhen the AT input is active, only the reference value input OI (4 to 20 mA) is processed.RST18ResetTo acknowledge an error message, switch on the RST input. If a reset is initiated during operation, the motor coasts to a stop. The RST input is a make (NO) contact; it cannot be programmed as a PTC contact.PTC19Connection for a PTC thermistorOnly digital input 5 can be programmed as a PTC thermistor input with PNU CO05. Use terminal L as the reference potential.STA20Three-wire control, Start signalImpervine control, Start signalF/R22Three-wire control, direction of rotationImpervine control, Start signalF/R20Three-wire control, direction of rotationImpervine control, Start signalSTP21Three-wire control, direction of rotationImpervine control, Start STOPSTP22Three-wire control, direction	2CH	09	Second time ramp	Activates the second acceleration and deceleration time with PNU A092 and PNU A093 respectively.
USP13Unattended start protectionThe fault signal can be acknowledged, for example, with the RST input.USP13Unattended start protectionWhen the USP input is switched on, unattended start protection is active. This prevents a motor restart when the voltage recovers after a mains failure while a start signal is present.SFT15Parameter access inhibitThe parameter protection, which is activated by switching on the SFT input, prevents loss of the entered parameters by inhibiting write operations to these parameters.AT16Reference input OI (4 to 20 mA) activeWhen the AT input is active, only the reference value input OI (4 to 20 mA) is processed.RST18ResetTo acknowledge an error message, switch on the RST input. If a reset is initiated during operation, the motor coasts to a stop. The RST input is a make (NO) contact; it cannot be programmed as a break (NC) contact.PTC19Connection for a PTC thermistorOnly digital input 5 can be programmed as a PTC thermistor input with PNU CO05. Use terminal L as the reference potential.STA20Three-wire control, Start signalImage: bit	FRS	11		When FRS (free run stop) is switched on, the motor is immediately switched off and coasts to a stop.
SFT15Parameter access inhibitrestart when the voltage recovers after a mains failure while a start signal is present.AT16Reference input OI (4 to 20 mA) activeWhen the AT input is active, only the reference value input OI (4 to 20 mA) is processed.RST18ResetTo acknowledge an error message, switch on the RST input. If a reset is initiated during operation, the motor coasts to a stop. The RST input is a make (NO) contact; it cannot be programmed as a break (NC) contact.PTC19Connection for a PTC thermistorOnly digital input 5 can be programmed as a PTC thermistor input with PNU C005. Use terminal L as the reference potential.STA20Three-wire control, Start signalEEMotor startSTAF/R22Three-wire control, direction of rotationIf a start change (ON/OFF) during operation causes a change in the direction of rotation. 2) Open circuit protection (automatic motor stop) 3) PulseON3	EXT	12	External fault message	
AT16Reference input OI (4 to 20 mA) activeWhen the AT input is active, only the reference value input OI (4 to 20 mA) is processed.RST18ResetTo acknowledge an error message, switch on the RST input. If a reset is initiated during operation, the motor coasts to a stop. The RST input is a make (NO) contact; it cannot be programmed as a break (NC) contact.PTC19Connection for a PTC thermistorOnly digital input 5 can be programmed as a PTC thermistor input with PNU C005. Use terminal L as the reference potential.STA20Three-wire control, Start signalThere-wire control, Start signalF/R22Three-wire control, direction of rotationStartF/R22Three-wire control, direction of rotationStart signalF/R20Three-wire control, direction of rotationStart signalF/R20Onlog <b< td=""><td>USP</td><td>13</td><td></td><td></td></b<>	USP	13		
RST18ResetTo acknowledge an error message, switch on the RST input. If a reset is initiated during operation, the motor coasts to a stop. The RST input is a make (NO) contact; it cannot be programmed as a break (NC) contact.PTC19Connection for a PTC thermistorOnly digital input 5 can be programmed as a PTC thermistor input with PNU C005. Use terminal L as the reference potential.STA20Three-wire control, Start signalImage: Control in the image: Control input is a make input	SFT	15	Parameter access inhibit	
PTC19Connection for a PTC thermistorOnly digital input 5 can be programmed as a PTC thermistor input with PNU C005. Use terminal L as the reference potential.STA20Three-wire control, Start signal21Three-wire control, Storp signalImage: Context of the control	AT	16		When the AT input is active, only the reference value input OI (4 to 20 mA) is processed.
stan 20 Three-wire control, Start signal as the reference potential. Motor start (input) STA F/R1 STP2) STP 21 Three-wire control, Stop signal Three-wire control, direction of rotation Image: Control of the start signal Image: Control of the start signal STA F/R1 STP2) F/R 22 Three-wire control, direction of rotation Image: Control of the start signal Image: Control of the start signal Image: Control of the start signal STA F/R1 STP2) F/R 22 Three-wire control, direction of rotation Image: Control of the start signal Image: Control of the start signal<	RST	18	Reset	the motor coasts to a stop. The RST input is a make (NO) contact; it cannot be programmed as a
STP $\frac{1}{21}$ $\frac{\text{signal}}{\text{Three-wire control, Stop}}{\frac{\text{signal}}{\text{signal}}}$ $\frac{1}{6}$ $\frac{5}{4}$ $\frac{3}{2}$ $\frac{1}{\text{P24}}$ $\frac{\text{Motor start}}{(\text{input)}}$ $\frac{\text{STA}}{\text{STA}}$ $\frac{\text{P/RT}}{\text{NT}}$ $\frac{\text{STP2}}{\text{STP2}}$ F/R 22 Three-wire control, direction of rotationThree-wire control, direction of rotation $\frac{1}{6}$	PTC	19		
STP 21 Three-wire control, Stop signal F/R 22 Three-wire control, direction of rotation FWD ON ³ OFF ON F/R 22 Three-wire control, direction of rotation Three-wire control, direction of rotation Image: Control of the second se	STA	20		
direction of rotation $\frac{1}{STOP} = \frac{OFF}{OFF} = \frac{ON}{OFF^{-1}} = \frac{ON}{OFF^{-1}}$ 1) A state change (ON/OFF) during operation causes a change in the direction of rotation. 2) Open circuit protection (automatic motor stop) 3) Pulse	STP	21		
STOP OFF — OFF ³) 1) A state change (ON/OFF) during operation causes a change in the direction of rotation. 2) Open circuit protection (automatic motor stop) 3) Pulse 3) Pulse	F/R	22		REV OFF ON ON
PID 23 PID control enabled Closing results in temporary disabling of PID control (PNU A071 = 01).			direction of rotation	STOPOFF–OFF3)1)A state change (ON/OFF) during operation causes a change in the direction of rotation.2)Open circuit protection (automatic motor stop)
	PID	23	PID control enabled	Closing results in temporary disabling of PID control (PNU A071 = 01).

1) To activate the function, enter this value in the corresponding parameter.

Designation	Value 1)	Meaning	Description
PIDC	24	Reset I-component of PID control	Closing causes disabling and resetting of the I-component.
UP	27	Acceleration (motor potentiometer)	When input UP is switched on, the motor accelerates (available only if you have specified the reference frequency with PNU F001 or A020).
DWN	28	Deceleration (motor potentiometer)	When input UP is switched on, the motor decelerates (available only if you have specified the reference frequency with PNU F001 or A020).
DWN-0Hz	29	Motor potentiometer, reset saved value of motor potentiometer to 0 Hz.	The DWN-0Hz control signal deletes the saved values (UP/DWN) of the electronic motor potentiometer (PNU F001). Precondition: PNU C101 = 00.
OPE	31	Keypad (operator)	The OPE control signal the optional keypad is set to the highest priority for reference frequency input (PNU A001) and for the start signal (PNU A002).
ADD	50	Add value from PNU A145 to frequency reference value.	The OPE signal causes the addition of a frequency offset (PNU A145) to the reference frequency (F-COM) (plus/minus = PNU A146).
F-TM	51	Digital input, increase priority	If the F-TM signal is active, the reference frequency input and the Start signal are issued through the control signal terminals regardless of the settings of PNU A001 and/or A002.
RDY	52	Inverter, reduce response time.	The RDY signal reduces the internal response time from the control signal to the inverter (filter time constant minimized and inverter transistors activated). Caution : Dangerous voltage at terminals U-V-W
SP-SET	53	Second parameter set with special functions	SP-SET enables the second parameter set in the extended functional span.
Control and re	eference v	voltage	
P24	_	+24 V for digital inputs	24 V = potential for digital inputs 1 to 6 Load carrying capacity: 30 mA
Н	-	+10 V reference voltage for external potentiometer	10 V = potential for supplying external reference value potentiometers Load carrying capacity: 10 mA
L	-	0 V reference potential	Reference potential for the following control signal terminals • Analog inputs O and OI • Analog output AM • Reference voltage +10 V (H) • Control voltage +24 V (P24)
Analog inputs	;		
0	-	Analog input for reference frequency (0 to 10 V)	The reference value can be set with the potentiometer: Reference value through voltage input: Reference value through current input: H O <td< td=""></td<>
01	-	Analog input for reference frequency (4 to 20 mA)	
			R: 1 to 5 kΩ 0 to 10 V 4 to 20 mA (0 to +9.6 V) (4 to 19.6 mA) Input impedance: 10 kO Load resistor: 250 Ω
			When the AT control signal (PNU $C001 = 16$) is issued, only analog input OI is accepted as reference frequency.

1) To activate the function, enter this value in the corresponding parameter.

Start/Stop signal

By default, the DF51 always decelerates the drive to 0 Hz when the STOP button on the keypad is pressed or the Enable signal FWD (control signal terminal 1) or REV (control signal terminal 2) switchoff. The deceleration time is set with PNU F003 (default = 10 s).

 For further settings and the behaviour of the DF51 after a STOP signal, see "System settings" (page 135) and "DC braking (DCB)" (page 121).

Start signal

By default the start signal is triggered through the inputs configured as FWD (control signal terminal 1) and REV (control signal terminal 2).

Caution!

If the supply voltage for the frequency inverter is applied when the start signal is activated, the motor will start immediately. Make sure that the start signal is not active before the supply voltage is switched on.

Caution!

Note that, when the FWD/REV input is opened (inactive condition when it has been configured as a N/O contact) and the input is then reconfigured as N/C contact, the motor may start immediately after the configuration.

Clockwise rotating field (FWD)

When you activate the digital input configured as FWD (forward) input, the frequency in phase sequence U-V-W is applied at the DF51's output. If connected accordingly, the motor then starts up in a clockwise direction. When the input is deactivated, the motor is decelerated.

Anticlockwise rotating field (REV)

When the digital input configured as REV (reverse) is activated, the motor starts up in an anticlockwise direction (W-V-U). When the input is deactivated, the motor is decelerated.

If you activate the FWD and the REV input at the same time during operation, the motor coasts to a halt.

Figure 78: Digital input 2 configured as REV

Under PNU C001 to C005 or C201 to C205 (second parameter set) you can assign the start signal to any digital input: 00 = FWD, 01 = REV.

Parameterizable digital inputs

Various functions can be assigned to terminals 1 to 5. Depending on your requirements, you can configure these terminals as follows:

- start signal anticlockwise rotating field (REV),
- selection inputs for various fixed frequencies (FF1 to FF4),
- reset input (RST), etc.

The terminal functions for programmable digital inputs 1 to 5 are configured with PNU C001 to C005, i.e. with PNU C001, you specify the function of digital input 1, with PNU C002 the function of digital input 2, etc. Note, however, that you cannot assign the same function to two inputs at the same time.

Programmable digital inputs 1 to 5 are configured by default as make contacts. If, therefore, the function of an input terminal is to be activated, the corresponding input must be closed (i.e. the input terminal is, for example, connected to terminal P24). Deactivation results in interruption of the input voltage (+24 V).

' Attention!

If an EEPROM error occurs, (fault message E08), all parameters must be checked to ensure that they are correct (especially the RST input).

Table 21: Digital inputs 1 to 5

PNU	Terminal	Adjustable in RUN mode	Value	DS
C001	1	-	\rightarrow table 22	00
C201				
C002	2			01
C202				
C003	3			02
C203				
C004	4			03
C204				
C005	5			18
C205				

For a detailed description of the input functions, see the pages listed in table 22.

able 22:	Function	of the	digital	inputs

Т

Value	Function	Description	\rightarrow
Value	ranction	Description	Page
00	FWD	Start/stop clockwise	78
01	REV	Start/stop anticlockwise	78
02	FF1	Fixed frequency selection, bit 0 (LSB)	93
03	FF2	Fixed frequency selection, bit 1	
04	FF3	Fixed frequency selection, bit 2	
05	FF4	Fixed frequency selection, bit 3 (MSB)	
06	JOG	Jog mode	96
07	DCB	DC braking	121
08	SET	Selection of second parameter set	100
09	2CH	Second acceleration and deceleration time	89
11	FRS	Controller inhibit and coasting to halt	80
12	EXT	External fault	119
13	USP	Unattended start protection	120
15	SFT	Parameter protection	139
16	AT	Select analog input	82
18	RST	Fault signal reset	183
19	PTC	PTC thermistor input (digital input 5 only)	117
20	STA	Start signal (3-wire)	97
21	STP	Stop signal (3-wire)	97
22	F/R	Direction of rotation (3-wire)	97
23	PID	Activation of PID control	131
24	PIDC	Reset integral component	131
27	UP	Acceleration (motor potentiometer)	94
28	DWN	Deceleration (motor potentiometer)	94
29	DWN-0Hz	Reset frequency (motor potentiometer)	94
31	OPE	Keypad	98
50	ADD	Add frequency offset	124
51	F-TM	Control signal terminals mode enabled	98
52	RDY	Inverter, reduce response time to control signals.	138
53	SP-SET	Second parameter set with special functions	100
255	_	Not used	-

Optionally, you can configure the digital inputs as break (NC) contacts. To do this, enter 01 under PNU C011 to C015 (corresponding to digital inputs 1 to 5. An exception applies only to inputs configured as RST (reset) or PTC (PTC thermistor input). These inputs can be operated only as make (NO) contacts.

Attention!

If you reconfigure digital inputs set up as FWD or REV as break contacts (the default setting is as a make contact), the motor starts immediately. They should not be reconfigured as break contacts if no motor is connected.

PNU	Termina I	Valu e	RUN	Function	DS
C011	1	00 or	-	00: High signal causes	00
C012	2	01		switch or activation of the function (NO =	
C013	3			normally open).	
C014	4			01: Low signal causes switching or	
C015	5			activation of the function (NC = normally closed).	

Controller inhibit and coasting (free run stop - FRS)

If you activate the digital input configured as FRS, the motor is switched off and coasts to a stop (for example if an Emergency-Stop is made). If you deactivate the FRS input, then, depending on the inverter's configuration, the frequency output is either synchronized to the current speed of the coasting motor or restarts at 0 Hz.

Figure 79: Configuration of digital input 3 as "controller inhibit" FRS (free run stop) and 4 as FWD (start/stop clockwise rotation)

Figure 80: Function chart for FRS (control inhibit and free run stop)

NM: Motor speed

- *t*_w: Waiting time (set with PNU b003)
- ① Motor coasts to a stop.
- 2 Synchronization to the current motor speed
- ③ Restart from 0 Hz
- Use PNU b088 to specify whether the motor is to restart at 0 Hz after the FRS input has been deactivated, or if synchronization to the current motor speed should take place after a waiting time specified under PNU b003.
- ► Configure one of the digital inputs 1 to 5 as FRS by entering the value 11 under the corresponding PNU (C001 to C005).

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b003	POWER, waiting time before automatic restart after power supply failure	-	~	0.3100 ss	Here, set a time which is to expire before an automatic restart is initiated after a fault signal. This time can also be used in conjunction with the FRS function. During the delay, the following message appears on the LED display:	1.0
b088	Motor restart after removal of the FRS signal	-	✓	00 01	Restart with 0 Hz Restart with the determined output frequency (current motor speed)	00

Specifying reference frequencies

Figure 81: Reference frequency input

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A001	Reference value source selection	-	-	00	 The setting range is limited by PNU b082 (raised starting frequency) and A004 (end frequency). Potentiometer (keypad) Frequency [Hz] Process variable [%] with active PID control (PNU A071 = 1) 	01
A201				01	Analog input: control signal terminals O and OI	
				02	Set value (PNU F001) of the keypad (arrow keys \sim / \sim). To save the set value, press the ENTER key (PNU A020).	
				03	Serial interface (Modbus)	
				10	Calculator: Calculated value (CAL) (\rightarrow section "Mathematical functions", page 123).	
A020 A220	Frequency reference input – reference value through keypad, PNU A001 must equal 02.	✓	✓	0400 Hz	You can enter a frequency reference value. You must set PNU A001 to 02 for this purpose.	0.0
A021 A022 A023 A035	Frequency reference input – fixed frequency (1)				You can assign a frequency to each of the 15 fixed frequency parameters from PNU A021 to A035.	
F001	Reference value, input through keypad				Indication of the current frequency reference value or the current fixed frequency. Modified values are saved with the ENTER key according to the selection of the digital inputs configured as FF1 to FF4. Resolution ± 0.1 Hz	

Analog reference input

By default (PNU A001 = 01), the voltage of 0 to 10 V -- at terminal O or the incoming current of 4 to 20 mA -- at terminal OI is interpreted as the reference value.

Figure 82: Analog reference input

Select analog input

Compensation of analog input signals (PNU C081, C082) has no effect on the characteristic. You can change the range from the zero point to the maximum value if the reference value does not correspond with the frequency range (0 to 50 Hz).

Example:

Reference value 0 to 10 V, PNU C081 = 200 %. With the reference voltage 0 to 10 V you can now adjust the output frequency in the range 0 to 25 Hz. With PNU C081 = 50 % you can adjust the output frequency (0 to 50 Hz) with a reference voltage from 0 to 5 V. Values above 5 V are not processed.

→ You can change the values of PNU C081 and C082 in RUN mode. Changes become active when you press the ENTER key.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
C081	Analog input O – reference value signal compensation	✓	~	0200 %	Compensation of analog voltage signals at input O to output frequency	100
C082	Analog input OI – reference value signal compensation	✓	✓	0200 %	Compensation of analog current signals at input OI to output frequency	100

Analog input, filter time constant (PNU A016)

The filter in the analog input (O, OI) suppresses interference to increase the stability of the output frequency (f_2). Reference signal (1) is scanned and evaluated in a so-called dead band range (3). You can set the scan rate and therefore the dead band duration with PNU A016:

- 1...16 = 1...16 scans
- 8 = Default settings, 8 scans
- 17 = 16 scan cycles and the non-observation of minor fluctuations in the range of +0.1 Hz to -0.2 Hz relative to the set output value, e.g. 0...10 V = 0...50 Hz.

Figure 83: Scanning behaviour at PNU A016 = 17

- (1) Analog reference signal with faults
- (2) Increase in reference value
- ③ Dead band range
- ④ Change of output value (f_2)
- $(\underline{\textbf{5}})$ New dead band range

Reference value through voltage input Analog input O

The external reference voltage signal can be specifically matched with parameters PNU A011 to A016, which are described below. You can assign the output frequency to a user-definable voltage reference value range.

Using PNU A016 you can adjust analog reference signal filtering.

 \rightarrow

The value input in A011 requires also a value in A012.

Figure 84: Reference voltage

PNU	Designation	RUN	b031 = 10	Value	Function	
A011	Analog input (O-L) — frequency at minimum reference value	-	\checkmark	0400 Hz	Hz Here, the frequency that corresponds to the minimum reference voltage under PNU A013 is set.	
A012	Analog input (O-L) – frequency at maximum reference value			0400 Hz	Here, you can set the frequency that corresponds to the maximum reference voltage under PNU A014.	0.0
A013	Analog input (O-L) – minimum reference value (offset)			0100 %	0100 % The minimum reference value entered here is a percentage of the highest possible reference voltage (10 V).	
A014	Analog input (O-L) – maximum reference value (offset)			0100 %	The maximum reference value entered here is a percentage of the highest possible reference voltage (10 V).	100.
A015	Analog input (O-L)			Determines the	behaviour at reference values below the minimum reference value.	01
	 selection of starting frequency 			00	Value of PNU A011	
	applied to the motor at minimum reference value.			01	0 Hz	
A016	Analog input – filter time constant			OI, and thereby	nverter's response time to reference value changes at analog input O or v determine the degree to which analog signal harmonics are filtered, v value between 1 and 17 here.	8
				1	Minimal filtering effect/fast response to reference value changes	
				16	Maximum filtering effect/slow response to reference value changes	
				17	Filter effect high/slow response to change of reference value with tolerance band +0.1 Hz to -0.2 Hz	

Reference value through current input

Analog input OI

The external reference current signal can be specifically matched with parameters PNU A101 to A106, which are described below. You can assign the output frequency to a user-definable current reference value range.

Using PNU A016 you can adjust analog reference signal filtering.

→ The value input in A101 requires also a value in A102.

Figure 85: Reference current

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A101	Analog input (OI-L), frequency at minimum reference value	-	~	0400 Hz	Here, the frequency that corresponds to the minimum reference current under PNU A103 is set.	0.0
A102	Analog input (OI-L), frequency at maximum reference value			0400 Hz	Here, you can set the frequency that corresponds to the maximum reference current under PNU A104.	0.0
A103	Analog input (OI-L), minimum reference value (offset)			0100 %	The minimum reference value entered here is a percentage of the highest possible reference current (20 mA).	0.
A104	Analog input (OI-L), maximum reference value (offset)			0100 %	The maximum reference value entered here is a percentage of the highest possible reference current (20 mA).	100.
A105	Analog input (OI-L), selection of starting			Determines the value.	e behaviour at reference values below the minimum reference	01
	frequency applied to the motor at minimum			00	Value from PNU A101	
A016	reference value. Analog input – filter time constant			To reduce the i input O or OI, a	inverter's response time to reference value changes at analog and thereby determine the degree to which analog signal filtered, you can enter a value between 1 and 17 here.	8
				1	Minimal filtering effect/fast response to reference value changes	
				16	Maximum filtering effect/slow response to reference value changes	
				17	Filter effect high/slow response to change of reference value with tolerance band +0.1 Hz to -0.2 Hz	

Set reference value with potentiometer (keypad)

Reference value input through the built-in potentiometer.

Figure 86: Keypad

The manipulating range can be specifically matched with parameters PNU A151 to A155, which are described below. You can assign the frequency inverter's output frequency to any potentiometer position. To enable the potentiometer, enter value 00 in PNU A001. To define the potentiometer's function, use the following parameters:

→ The value input in A151 requires also a value in A152.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A001	Reference value source	-	-	00	Potentiometer (keypad)	01
A201	selection			01	Analog input: control signal terminals O and OI	
				02	Functions PNU F001 or A020	
				03	Serial interface (Modbus)	
				10	Calculator (calculated value of CAL)	
A151	Potentiometer (keypad), starting frequency	-	√	0400 Hz The starting frequency output when the potentiometer is to its left stop.		0.0
A152	Potentiometer (keypad), end frequency	-	√	0400 Hz	The end frequency output when the potentiometer is set to its right stop.	0.0
A153	Potentiometer (keypad), starting point	-	√	0100 %	The starting point (offset) for the potentiometer's setting range.	0
A154	Potentiometer (keypad), end point	-	√	0100 %	The end point (offset) for the potentiometer's setting range.	100
A155	Potentiometer (keypad),	-	\checkmark	00	Value from PNU A151	01
	starting frequency source			01	0 Hz	
				These functions value above zer	are enabled only if parameters PNU A151 and A153 contain a ro.	

Inverted reference input

\bigtriangledown

Caution!

This setting does not provide open-circuit protection at extreme reference inputs (0...10 V, 4...20 mA.

In special cases it may be necessary to output the highest frequency for the motor at the smallest reference value and the lowest frequency at the highest reference value.

► To do this, enter the highest frequency in A011, A101 or A151 and the lowest frequency in A012, A102 or A152.

Figure 88: Inverted reference input

- ① A011, A101, A151
- A012, A102, A152
- ③ A013, A103, A153
- ④ A014, A104, A154
- (5) A015, A105, A155
- Reference input 0...+10 V through analog input O: A011...A016
- Reference input 4...20 mA through analog input OI: A101...A106
- Reference input through the potentiometer of the built-in keypad or the external keypad DEX-KEY-6: A151...A156

Settings→ page 84 – 86

Reference value control (AT)

With the AT command you can enable manual selection of analog reference sources.

 Configure one of the digital inputs 1 to 5 as AT by entering the value 16 under the corresponding PNU (C001 to C005). When the digital input which has been configured as AT is active, the reference value is defined by the current flow (4 to 20 mA) at terminal OI. If however the AT input is inactive, the reference value is defined by the voltage present (0 to 10 V) at terminal O.

If none of the digital inputs are configured as AT, both voltage input O and current input OI are active. If the current and voltage signals are applied at the same time, the reference frequency is calculated by adding the two signals.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A005 Analog input – –		-	-	On active AT sig	nal (\rightarrow PNU C001 = 16) a changeover takes place between:	
	selection (AT)			00	Analog inputs O and/or OI	00
				01	Analog inputs O and OI (digital input AT is ignored)	
				02	Analog input O or potentiometer (keypad)	
				03	Analog input OI or potentiometer (keypad)	

Figure 89: Selecting the reference source

The table below shows the selection of analog reference value inputs depending on the AT command and PNU A005.

PNU A005	PNU C001 to C006	Digital inputs 1 to 6	Analog input selection	
00 (DS)	AT (function not enabled)	-	[O] = 0+10 V and/or [OI] = 420 mA	5 P24
	16 = AT	OFF	[O] = 0+10 V	
		ON	[OI] = 420 mA	
01	16 = AT	(ignored)	Sum [O] and [OI]	Example:
02	16 = AT	OFF	[O] = 0+10 V	Digital input 5 with function AT
		ON	Potentiometer of the LCD keypad	
03	16 = AT	OFF	[OI] = 420 mA	
		ON	Potentiometer of the LCD keypad	

Changing over time ramps

During operation, you can change over from the time ramps set under PNU F002 and F003 to those programmed under PNU A092 and A093. This can be done either by applying an external signal to digital input 2CH at any time or when the frequencies configured under PNU A095 and A096 are reached.

Use PNU A094 to set the changeover mode.

Figure 90: Frequency-controlled acceleration ramp changeover

► Use PNU A095 to define the required output frequency for automatic changeover.

 Configure one of the digital inputs as 2CH by entering the value 09 in the corresponding PNU C001 to C005.

Figure 92: Digital input 5 = 2CH (second time ramp)

The deceleration time is set with PNU A093 and A096.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A092 A292	Acceleration time 2	\checkmark	\checkmark	0.013000 s	Setting times for the second acceleration and deceleration time 0.1 to 999.9 s; resolution: 0.1 s	15.00
A093 A293	Deceleration time 2				1000 to 3000 s; resolution: 1 s	
A094 A294	Acceleration time, specify signal for changeover from acceleration time 1 to acceleration time 2	-	-	00 01	Digital input (2CH) Frequency (PNU A095 or A096)	00
A095 A295	Acceleration time, frequency for changeover from ramp time 1 to ramp time 2	-	-	0.0400 Hz	Here, set a frequency at which the changeover from the first to the second acceleration time is to take place.	0.0

PNU	Designation	RUN	b031 = 10	Value	Value Function			
A096 A296	Deceleration time, frequency for changeover from ramp time 1 to ramp time 2	-	-	0.0400 Hz	Here, set a frequency at which the changeover from the first to the second deceleration time is to take place.			
A097	Acceleration time, characteristic	-	-	(first and second	re, you can set a linear or an S-curve acceleration characteristic for motor acceleration st and second time ramp): 00 01 t			
				00	Linear S curve			
A098	Deceleration	-	-	00	Linear	00		
	time, characteristic			01	01 S curve			
F002	Acceleration	\checkmark	\checkmark	0.013000 s	Resolution of 0.01 s at an input of 0.01 to 99.99	10.00		
F202	time 1				Resolution of 0.1 s at an input of 0.1 to 999.9 Resolution of 1 s at an input of 1000 to 3000			
F003	Deceleration	\checkmark	\checkmark	0.013600 s	Resolution of 0.01 s at an input of 0.01 to 99.99	10.00		
F203	time 1				Resolution of 0.1 s at an input of 100.0 to 999.9 Resolution of 1 s at 1000 to 3600 s			

If the deceleration ramp is to have different changeover times from the acceleration ramps, use the "second parameter set" command.

Example:

- ► Parameterize as follows:
 - PNU C004 = 08 (SET, second parameter set selected)
 PNU C005 = 09 (2CH, second time ramp)

Figure 93: Digital input 5 = 2CH (second time ramp), digital input 4 = SET (second parameter set)

Minimum and maximum operating frequency

With PNU A061 and A062 you can limit the frequency range defined with PNU b082 (starting frequency) and PNU A004 (end frequency) (\rightarrow fig. 94). As soon as the frequency inverter receives a start signal, it outputs the frequency set with PNU A062; at maximum reference frequency, the frequency set with PNU A061.

Figure 94: Upper frequency limit (PNU A61) and lower frequency limit (PNU A062)

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A004 A204	End frequency (fmax)	-	-	30400 Hz	Maximum output frequency	50 {60}
A061	Maximum operating frequency	-	✓	0400 Hz	This function can be deactivated by entering 0.0.	0.0
A062 A262	Minimum operating frequency			0400 Hz		0.0
b082	Increased starting frequency (e.g. at high static friction)	_	✓	0.59.9 Hz	A higher starting frequency results in shorter acceleration and deceleration times (for example to overcome high frictional resistance). If the frequencies are too high, fault message E002 may be issued. Up to the set starting frequency, the motor accelerates without a ramp function.	0.5

For further information, see section "Limit and target values", page 68.

Suppressing frequency ranges

To prevent resonances occurring in the drive system, you can, in addition, program three frequency jumps under PNU A063 to A068.

In the example (\rightarrow fig. 95), the first frequency jump (PNU A063) is defined as 15 Hz, the second (PNU A065) as 25 Hz and the third (PNU A067) as 35 Hz. The jump widths (adjustable under PNU A064, A066 and A068) are set to 0.5 Hz in the example.

The jump width (PNU A064) is the range above and below the selected frequency value (PNU A063). With PNU A063 set to 1 Hz and A064 to 15 Hz the range from 14.5 Hz to 15.5 Hz is suppressed.

In this example, the drive can be operated in the following frequency ranges:

- 0 to 14.5 Hz
- 15.5 to 24.5 Hz
- 25.5 to 34.5 Hz
- 35.5 to *f*_{max}

Static operation in the suppressed frequency ranges is not possible.

Figure 95: Frequency jumps

- (1) Acceleration
- Deceleration

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A063	Frequency jump (1)	-	\checkmark	0400 Hz	This function can be deactivated by entering 0.0.	0.0
A064	Frequency jump (1) – jump width			010 Hz		0.5
A065	Frequency jump (2)			0400 Hz		0.0
A066	Frequency jump (2) – jump width			010 Hz		0.5
A067	Frequency jump (3)			0400 Hz		0.0
A068	Frequency jump (3) – jump width			010 Hz		0.5

Fixed frequencies

Through digital input configured as FF1 to FF4 you can select up to 16 user-definable fixed frequencies (including a reference frequency) (\rightarrow table 24).

The fixed frequencies have a higher priority than all other reference values and can be accessed at any time through inputs FF1 to FF4 without needing to be enabled separately. Jog mode, to which the highest priority is assigned, is the only operation with a higher priority than the fixed frequencies.

Fixed frequency stage 0 (none of the inputs FF1 to FF4 are activated) corresponds to the frequency reference value. Depending on the value entered in PNU A001, this can be defined with the installed potentiometer, the reference value inputs 0 or OI or through PNU F001 and PNU A020.

Fixed	PNU	Input			
frequency stage		FF4	FF3	FF2	FF1
$0 = f_{ref}$	Frequency reference value	0	0	0	0
f-Fix1	A021	0	0	0	1
f-Fix2	A022	0	0	1	0
f-Fix3	A023	0	0	1	1
f-Fix4	A024	0	1	0	0
f-Fix5	A025	0	1	0	1
f-Fix6	A026	0	1	1	0
f-Fix7	A027	0	1	1	1
f-Fix8	A028	1	0	0	0
f-Fix9	A029	1	0	0	1
f-Fix10	A030	1	0	1	0
f-Fix11	A031	1	0	1	1
f-Fix12	A032	1	1	0	0
f-Fix13	A033	1	1	0	1
f-Fix14	A034	1	1	1	0
f-Fix15	A035	1	1	1	1

^{0 =} input deactivated

1 = input activated

Figure 96: Digital inputs 2 to 5 configured as FF1 to FF4 (fixed frequency)

Figure 97: Function chart for FF1 to FF3 (fixed frequency control)

Program one or more of the digital inputs 1 to 5 as FF1 to FF4, by entering the values 02 (FF1) to 05 (FF4) under the corresponding PNU (C001 to C005).

By default, FF1 is preassigned to digital input 3 (= A021) and FF2 to digital input 4 (= A022). When both inputs (3 and 4) are activated, the value of A023 is selected.

The fixed frequencies can be configured in two ways:

- by entering the fixed frequencies under PNU A021 to A035;
- by entering the fixed frequencies under PNU F001.

Entering the fixed frequencies under PNU A021 to A035

- ► Go to PNU A021 and press the PRG key.
- ► Use the arrow keys (and) to enter the fixed frequency and confirm with the ENTER key.
- Enter the remaining fixed frequencies by repeating these steps for PNU A022 to A035.

Entering the fixed frequencies under PNU F001

PNU F001 lets you set the fixed frequency of the active digital input directly.

Example:

- ► Go to PNU F001.
- ► Activate digital input 3 (= FF1).
- ▶ Press the PRG- key.

The default value 0.0 is displayed.

- \blacktriangleright With the arrow keys (f and \checkmark), set the required frequency value.
- ▶ Press the ENTER key to save the value in PNU A021.

You can also make this setting during operation in RUN mode.

- ► Disable digital input 3 and activate digital input 4 (= FF2).
- ▶ Repeat your input with the arrow keys.
- ▶ Press the ENTER key to save the value in PNU A022.

- ► Activate digital inputs 3 and 4 (= FF3).
- Repeat your input with the arrow keys.
- ▶ Press the ENTER key to save the value in PNU A023.

If you have configured further digital inputs with FF3 and FF4 (PNU C001 to C005), you can enter up to 15 fixed frequencies. The DF51 saves these values in PNU A021 to A035 (\rightarrow table 24).

Motor potentiometer

With the UP and DWN (down) signals, you can enter the reference frequency using an electronic motor potentiometer.

Figure 98: Control using electronic motor potentiometer

- Because the terminal functions UP and DWN can be used only when the reference frequency has been specified with PNU F001 or A020, you need to make sure that PNU A001 contains the value 02.
- Configure two of the digital inputs 1 to 5 as UP or DWN by setting the corresponding PNU (C001 to C005) to 27 (UP) or 28 (DWN).

Through the use of the input configured as UP, the reference frequency set under PNU A020 is also increased or, with DWN, reduced (\rightarrow fig. 99).

The shortest permissible duration during which an UP or DWN input must be active is 50 ms.

The current reference frequency is saved when parameter PNU C101 contains the value 01. It remains in memory even in the event of a power cut (POWER OFF).

The UP/DWN function is not available when jog mode has been activated (with active JOG input) or when the reference frequency definition is made through the analog input terminals.

The output frequency range for UP and DWN ranges from 0 Hz up to the end frequency specified under PNU A04 (\rightarrow section "End frequency", page 68).

To operate the electronic motor potentiometer through control signal terminals, microswitch TM/PRG must be in its PRG position.

You can also use the electronic motor potentiometer function with the arrow keys (Í and \checkmark) of keypad.

- ► In PNU A001 enter the value 02 and save your input with the ENTER key.
- ► Select PNU A020 and press the PRG key to open it.
- ► Enable a direction of rotation for the Motor (for example with the default settings by setting digital input 1 = FWD).
- \blacktriangleright With the arrow keys (f and \checkmark), set the required frequency value.

If you are using the keypad, you save the set reference frequency with the ENTER key. PNU C101 is not used in this control mode.

The UP command accelerates the drive up to the limit value f_{max} (PNU F001) at the acceleration ramp set with PNU F002.

The deceleration (DWN) down to 0 Hz takes place at the deceleration ramp set with PNU F003.

Figure 99: Function chart for UP/DWN (acceleration/deceleration – motor potentiometer)

*f*₀: Output frequency

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A001	Reference value source selection	-	-	00	 The setting range is limited by PNU b082 (raised starting frequency) and A004 (end frequency). Potentiometer (keypad) Frequency [Hz] Process variable [%] with active PID control (PNU A071 = 1) 	01
				01	Analog input: control signal terminals O and OI	
				02	Set value (PNU F001) of the keypad (arrow keys \sim / \sim). To save the set value, press the ENTER key (PNU A020).	
				03	Serial interface (Modbus)	
						10
C101	Motor	-	\checkmark	00	Clear last value and use default for PNU F001	00
	potentiometer — reference value for motor potentiometer after power supply interruption			01	Use saved motor potentiometer value set with UP/DWN function through digital inputs.	

Resetting the frequency DWN-0Hz

If you activate one of the programmable Digital inputs as DWN-0Hz, you can use this input to reset the frequency set with the motor potentiometer to 0 Hz. This resets PNU A020 to 0 Hz.

 Program one of the digital inputs 1 to 5 as DWN-0Hz by setting the corresponding PNU (C001 to C005) to 29.

Jog mode

Jogging is used, for example, to set up a machine in manual mode. To do this, a digital input (1 to 5) must be activated with the JOG command (=06) under PNU C001 to C005. With a Start signal at the FWD or REV input, a relatively low frequency without acceleration ramp is applied to the motor. This jog frequency is set with PNU A038. Do not set the frequency too high, as it is applied directly to the motor without acceleration ramp. Excessive jog frequencies can cause a fault. We recommend a frequency below 5 Hz.

Jog mode can be activated only when the frequency inverter is in the Stop state.

By default (PNU A002 = 01) the position of microswitch TM/PRG has no function.

The value of PNU AA039 determines how the motor is slowed.

Attention!

Make sure that the motor has stopped before using jog mode.

The jogging frequency can be read off with an optional keypad.

- ► To do this, enter the value 02 in PNU A002.
- ► Set microswitch TM/PRG to its PRG position.
- ► Activate the digital input configured as JOG.

Use the START and STOP keys to start and stop the motor respectively.

Jog mode is started only through the active JOG input, not through the keypad.

Figure 101: Function chart for JOG mode

NM: Motor speed

(1) Depending on the value of PNU A039

00: Coasting

- 01: Deceleration ramp
- 02: DC braking

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A002	Start signal	-	-	01	Digital input (FWD/REV)	01
	source selection			02	LCD keypad: START and STOP key.	
	Selection			03	Modbus: Activates a COIL for RUN/STOP and a COIL for FWD/REV.	
A038	Jog mode Jog mode reference value	✓	✓	09.99 Hz	The frequency to be applied to the motor in jog mode.	1.00
A039	Jog mode	- 🗸	\checkmark	00	Free coasting (FRS)	00
	Motor stop method		01	Deceleration ramp		
				02	DC braking	

Three-wire control (STA - STP - F/R)

Three-wire control is a common control method for machines: Two inputs are used for start and stop pulses and a third for selecting the direction of rotation.

Through the digital inputs configured as STA, STP and F/R you can operate the frequency inverter with three switches:

- STA: Start signal
- STP: Stop signal
- F/R: Direction of rotation

Figure 102: Digital input 3 configured as Pulse Start (STA), digital input 4 as Pulse Stop (STP) and digital input 5 as Reverse Direction (F/R).

- Configure three of the digital inputs 1 to 5 as STA, STP and F/R by entering the following values under the corresponding PNU (C001 to C005).
 - STA: 20
 - STP: 21
 - F/R: 22

The frequency inverter accelerates to the reference frequency specified with PNU A020.

Value range PNU C001 to C006			State	Description
20	STA	Three-wire control start signal	ON	Motor start through pulse • Reference input PNU F001 or A020 • Acceleration time PNU F002
			OFF	No change in motor operation
21	STP	Three-wire control stop signal	ON	Required enable signal for motor operation. Wire breakage causes automatic motor stop.
			OFF	Motor stop through pulse (deceleration time PNU F003)
22	F/R	Three-wire control, direction of	ON	Anticlockwise rotating field (REV)
		rotation	OFF	Clockwise rotating field (FWD)

Table 25: Three-wire control

- ► In PNU A001 enter the value 02 (reference input through PNU A020).
- ▶ In PNU A002 enter the value 01 (start signal through digital inputs).
- ► In PNU A020 enter the reference frequency.

If you want to start the inverter through the STA input, the STP input must be enabled (inverse function, open-circuit protection). The signal must be applied for only a short period (pulse, \ge 50 ms). When the STP input is disabled, the motor stops. When the F/R input is activated (pulse) the motor reverses.

Figure 103: Function chart Pulse start STA, Pulse stop STP and Direction Reversal F/R

→ When three-wire control is activated (STA-STP-F/R), functions 00 (FWD) and 01 (REV) are disabled.

Control signal terminal modus (F-TM) and keypad (OPE)

If you apply value 51 (F-TM) to one of digital inputs 1 to 5 under PNU C001 to C005, the control signal terminals are used as source for the start/stop signal and/or for the reference frequency input. The values of PNU A001 and A002 are then ignored.

Example:

In machines, a higher-level controller usually issues the start signal (clockwise rotating field FWD) through control signal terminal 1 and the reference frequency through analog input O. For maintenance and setup tasks, these inputs should be made through a locally mounted optional keypad DEX-KEY-6. Local control mode is activated with a keyswitch.

Set the parameters as follows for this purpose:

PNU A001 = 00	The keypad's potentiometer as reference frequency source.
PNU A002 = 02	The keypad's Start key as start signal source.
PNU C003 = 51	Digital input 3. Mode "Control signal terminals preferred" is active. The analog reference frequency is taken from control signal terminal O and the start/stop signal from control signal terminal 1 (FWD).

For local operation, the F-TM signal from control signal terminal 3 is then disabled through the keyswitch (N/C contact). On the keypad, the START and potentiometer LEDs light up. The drive can now be controlled with the DEX-KEY-6 keypad's Start and Stop keys. Its speed is set with the keypad's potentiometer.

When the signal state (F-TM) changes in the RUN mode, the motor is automatically stopped and can be restarted only with a new Start signal.

Table 26: "Control signal terminals preferred" mode.

Value range PNU C001 to C006			State	Description
51	F-TM	Digital input, Mode: Control signal terminals preferred.	ON	 Frequency reference value input through control signal terminals (A001 = 01) Start/Stop input through control signal terminals (A002 = 01)
			OFF	Uses the settings from PNU A001 and A002.
31	OPE	Keypad (operator)	ON	When the OPE input is activated, the start/stop signal (PNU A002) and the reference input (PNU A001) are provided through the keypad.
			OFF	Start/stop signal and reference input are provided by PUN A001 and A002.

Figure 104: Selecting the control signal source

① Start/Stop through digital input 1 (FWD) with active digital input 3 (F-TM, Force Terminal Mode).

- (2) Start/Stop through keypad DEX-KEY-... with active digital input 5 (OPE, Operator).
- ③ Start/Stop through the serial interface (Modbus).

The changeover between the signal sources takes place only when the motor is at standstill (STOP).

Second parameter set (SET)

With function SET you can activate the second parameter set through one of digital inputs 1 to 5.

→ The changeover between the parameter sets can take place only at standstill (STOP).

In the second parameter set, a **2** is appended to the parameter's group letter (PNU x**2**xx).

In the tables in this manual, the parameters of the second parameter set have a grey background (______).

Figure 105: Example of a parameter list with and without SET function (PNU C003 = 08: second parameter set).

When the SET signal is active, the frequency inverter works with the characteristic of the second parameter set. You can use this function, for example, to run a drive with two different acceleration and deceleration times or operate an additional motor using the same frequency inverter (although not at the same time) without having to reconfigure the inverter. Applications with one frequency inverter and two motors can include:

- Roller drives vertical sorting systems in horizontal conveying systems
- Rotation and traction drives of hoisting systems

The functions of the second parameter set are listed in table 28, page 102.

► Configure one of the digital inputs 1 to 5 as SET by entering the value 08 under the corresponding PNU (C001 to C005).

Figure 106: Digital input 3 configured as "second parameter set" (SET)

The motor must be at a stop before the SET input is enabled.

As soon as the SET input is deactivated, the parameters of the default parameter set are used again.

Special functions in the second parameter set (SP-SET)

With function SP-SET you can activate the second parameter set through one of digital inputs 1 to 5 with modified authorization levels.

→ Unlike function SET, SP-SET lets you activate selected parameters also in RUN mode (→ table 28, page 102).

The following example illustrate the possible uses for this parameter changeover function for various deceleration ramps.

→ Function 2CH (second time ramp) must be set in both parameter sets.

If, instead of SET, the second parameter set SP-SET is activated, you can change over between all three deceleration ramps in RUN mode. can therefore choose between three different, individually adjustable deceleration ramps to slow down the motor.

Notes about changing settings in the second parameter set

Functions SET and SP-SET can not be assigned at the same time for digital inputs 1 to 6.

→ Functions FRS (11), EXT (12), RST (18), PTC (19) and PID (23) must be assigned to the same digital inputs 1 to 5 (PNU C001 to C005) in the first and second parameter set (SET or SP-SET). The function is otherwise ignored and the value **255** (no function) is written to the respective parameters PNU C001 to C005.

Table 27: Example – overwriting with values from the second parameter set

First paramete	er set	Second paran	neter set (SET, SP-SET)	Second/first parameter set	
C001	00	C201	00	C201/C001	00
C002	01	C202	01	C202/C002	01
C003	08 [SET] a →	C203	08 [SET]	C203/C003	255 c 🗲
C004	03	C204	53 [SP-SET] b →	C204/C004	53 [SP-SET] 个
C005	18	C205	18	C205/C005	18

When you enter the value 08 (SET) in PNU C003 (1), the second parameter set (x**2**xxx) is activated. The values are the same in both parameter sets. If you now enter the value 53 (SP-SET) under PNU C204 in the second parameter set (2), PNU C004 is also automatically set to 53. Because SET and SP-SET cannot be used

at the same time, the content of PNU C003 and C203 is overwritten with 255 (no function) ③. Digital input 3 now has no function. With digital input 4 you can now change between the first and second parameter set with special functions (SP-SET). A parameter set changeover is possible only at standstill (STOP).

Table 28: Functions with second parameter set

Description of the function	Parameter nu		
	Default	Second parame	eter set
	(STOP) ¹⁾	SET (STOP) ¹⁾	SP-SET (RUN) ²⁾
First acceleration time	F002	F202	F202
First deceleration time	F003	F203	F203
Reference value source selection	A001	A201	-
Start signal source selection	A002	A202	-
Base frequency	A003	A203	-
End frequency (fmax)	A004	A204	-
Frequency reference input – reference value through keypad, PNU A001 must equal 02.	A020	A220	A220
Boost, manual voltage boost	A042	A242	A242
Maximum boost relative to the base frequency	A043	A243	A243
Ulf characteristic	A044	A244	-
Ulf characteristic – output voltage	A045	A245	-
Maximum operating frequency	A061	A261	A261
Minimum operating frequency	A062	A262	A262
Acceleration time 2	A092	A292	A292
Deceleration time 2	A093	A293	A293
Acceleration time, specify signal for changeover from acceleration time 1 to acceleration time 2	A094	A294	A294
Acceleration time, frequency for changeover from ramp time 1 to ramp time 2	A095	A295	A295
Deceleration time, frequency for changeover from ramp time 1 to ramp time 2	A096	A296	A296
Thermal overload, tripping current	b012	b212	-

1) (STOP): Parameters or functions can be activated only in motor stop.

2) (RUN): Parameters or functions can be activated during operation.

Description of the function	Parameter nu			
	Default	Second parame	eter set	
	(STOP) ¹⁾	SET (STOP) ¹⁾	SP-SET (RUN) ²⁾	
Thermal overload, characteristic (torque curve)	b013	b213	-	
Motor current limitation – function	b021	b221	-	
Motor current limitation, tripping current	b022	b222	-	
Motor current limitation, deceleration time constant	b023	b223	-	
Motor current limitation, limit current selection	b028	b228	-	
Digital input 1 – function	C001	C201	-	
Digital input 2 – function	C002	C202	-	
Digital input 3 – function	C003	C203	-	
Digital input 4 – function	C004	C204	-	
Digital input 5 – function	C005	C205	-	
Output function – warning threshold for overload signal (OL)	C041	C241	-	
Motor – assigned rating [kW]/{HP} at rated voltage (U_e)	H003	H203		
Motor – number of poles	H004	H204		
Motor – stabilization constant	H006	H206		

1) (STOP): Parameters or functions can be activated only in motor stop.

2) (RUN): Parameters or functions can be activated during operation.

Actual value and status signals

This section describes how to assign various actual values and status signals to the control signal terminals.

Control signal terminal overview (output)

The table below provides an overview of the output control signal terminals and a brief description of the functions which you can assign to the analog and digital outputs. The following pages contain a detailed description of each function.

Table 29: Brief description of the functions

Designa tion	Value ¹⁾	Designation	Description		
Analog ou	utputs				
АМ	_	Analog output, measured value indication selection	Through this output, the frequency can be issued through a connected analog or digital measurement device. Alternatively, the motor current can be output (PNU C028). 0 to +10 V Load carrying capacity: 1 mA		
L	_	0 V	Reference potential for the following control signal terminals Analog inputs O and OI Analog output AM Reference voltage +10 V (H) Control voltage +24 V (P24) 		
Digital ou	itputs 11 an	id 12	Parameterizing PNU C021 and C022		
RUN	00	RUN signal	The RUN signal is output during operation of the motor.		
FA1	01	Reference frequency reached	free f2 FA1 FA2		
			$f_{\rm S}$ = reference frequency		
FA2	02	Frequency signal	If a digital output is configured as FA1, a signal is issued as long as the reference value is reached. If a digital signal is configured as FA2, a signal is output as long as the frequencies defined under PNU C042 (during acceleration ramp) and PNU C043 (during deceleration ramp) are exceeded.		
OL	03	Overload warning	The OL (overload) signal is output when the overload alarm threshold (adjustable under PNU C041) is exceeded.		
OD	04	PID control deviation	The OD (Output Deviation) signal is issued when the PID control deviation set with PNU C044 is exceeded.		
AL	05	Fault/alarm signal	The AL (alarm) signal is issued when a fault occurs.		
Dc	06	Warning: Analog reference value signal interrupted	 Dc (Disconnect Detect) monitors the analog inputs in RUN mode and signals any failure or drop-off below the reference value signal. Input O (0 to 10 V) below value in PNU b082 or current signal at input OI less than 4 mA. 		
FBV	07	Warning: Actual value signal to PID controller interrupted	FBV (Feedback Value Check) monitors the PV feedback signal from the PID controller in RUN mode. Reference/actual value differential of PID control exceeds the tolerance range in PNU C052/C053.		
NDc	08	Fault/Warning: Faulty communication through serial interface.	NDc (Network Detection Signal) monitors the watchdog timer during communication through the RS 485 serial interface (Modbus). Fault/warning dependent on PNU C077 – communication watchdog timer has expired: communications are faulty.		
LOG	09	Result of logic link (PNU C143)	LOG (Logical Output) shows the result of PNU C143 (High, Low) of the logic function (AND, OR, XOR).		

1) To activate the function, enter this value in the corresponding parameter.

2) This output can be used as both a signal output and a normal digital output.

Designa tion	Value ¹⁾	Designation	Description
ODc	10	Fault/Warning: Interrupted communication through serial interface.	ODc (Overload Disconnect Detect) monitors the serial RS 485 interface (Modbus) in connection with optional field bus interface modules DE51-NET-CAN and DE51-NET-DP. The ODc signal is issued in the event of a power interruption or an overload of the internal power supply.
CM2	-	0 V, +24 V	 Common reference potential for the parameterizable digital outputs 11 and 12. Depending on the circuit type, CM2 can be connected with: 0 V: Sink-type logic, → page 48 +24 V: Source-type logic, → page 48 CM2 is isolated from reference potential L.
Signalling	relay K1 ²⁾		Parameterizing PNU C024
K11	-	Signalling relay K1 (contact)	During normal fault-free operation, terminals K11-K14 are closed. If a malfunction occurs or the supply voltage is switched off, terminals K11-K12 are closed.
K12			 Maximum permissible values: 250 V ~; maximum load 2.5 A (purely resistive) or 0.2 A (with a power factor of 0.4)
K14			 30 V

1) To activate the function, enter this value in the corresponding parameter.

2) This output can be used as both a signal output and a normal digital output.

Analog output (AM)

The AM terminal provides the output frequency or the motor current as voltage signal (0 to +10 V). The reference potential is 0 V (terminal L).

The selection between the frequency and motor current indication is made with PNU C028.

Analog output signal

For signal compensation, PNU b080 (gain) and PNU C086 (offset) are used. The signal accuracy after compensation is about ± 5 %.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b080	Analog output AM, gain factor	√	√	0255	Here the analog 010 V signal output at the AM terminal can be compensated and matched to the frequency actual value or the output current.	100
b086	Frequency indication scaling factor for value in PNU d007	✓	✓	0.199.9	The product of the value displayed under PNU d001 and this factor is displayed at PNU d007. This value is also available at the AM terminal.	1.0
C028	Analog output AM, measured	-	-	00	f-Out: Current output frequency: Indicates the output frequency in the range 0 to $f_{\rm max}$ (PNU A004).	00
	value indication selection			01	I-Out: Current output current: Indicates the motor current in the range 0 to 200 %.	
C086	Analog output AM – offset compensation	√	✓	010 V	Offset compensation for analog output signal AM.	0.0

Parameterizable digital outputs

Figure 109: Digital outputs 11 and 12, CM2

Configurable digital outputs 11 and 12 are open collector transistor outputs (\rightarrow fig. 110), to which you can connect, for example, relays (such as ETS4-VS3, Order No. 083094). These outputs can both be used for various functions, for example to signal when a determined reference frequency is reached or when a fault occurs.

Figure 110: Digital output (sink-type) Transistor output: max. 27 V ---, 50 mA

Terminal CM2 is the common reference potential for digital outputs 11 and 12. CM2 can be connected to 0 V in sink-type logic and to +24 V in source-type logic (\rightarrow fig. 51, page 48).

Table 30:	Digital	outputs	11	and	12
-----------	---------	---------	----	-----	----

PNU	Terminal	Adjustable in RUN mode	Value	DS
C021	11	-	→ table 31	01
C022	12			00

For a detailed description of the output functions, see the pages listed in table 31.

Value	Function	Description	\rightarrow Page
00	RUN	RUN: In operation	111
01	FA1	FA1: Frequency reference value reached	111
02	FA2	FA2: Frequency signal – output frequency exceeds value in PNU C042 (during acceleration ramp) or PNU C043 (during deceleration ramp).	
03	OL	OL: Overload warning – motor current exceeds value in PNU C041.	115
04	OD	OD, PID control: Reference/actual value difference exceeds signalling threshold set with PNU C044.	131
05	AL	AL: Fault – fault/alarm signal	183
06	Dc	Dc: Warning – reference value at input O (0 to +10 V) lower than value in PNU b082 or current signal at input OI below 4 mA. (reference value signal interrupted)	
07	FBV	FBV: PID control – actual value monitoring (PV) signal on breach of limit values PNU C052/C053. (actual value signal interrupted)	
08	NDc	NDc: Fault/warning dependent on PNU C077 – communication watchdog timer has expired: communications are faulty.	
09	LOG	LOG: Shows result of logic link performed through PNU C143. (High, Low)	
10	ODc	ODc: Fault/warning: Communication overload or interrupted (with optional DE51-NET-CAN, DE51-NET-DP). (overload)	

Table 31: Functions of the digital outputs

Configurable digital outputs 11 and 12 are by default configured as N/O contacts. When an assigned function activates the output, terminal CM2 is connected with terminal 11 or 12.

Optionally, you can configure the digital outputs as break (NC) contacts. To do this, enter 01 under PNU C031 and C032 (corresponding to digital output 11 and 12).

Table 32: Configurati	on of digital o	outputs as break	contacts
-----------------------	-----------------	------------------	----------

PNU	Termina I	Valu e	Adjustable in RUN mode	Function	DS
C031	11	00 or	-	00: Make	00
C032	12	01		contact	
CODZ	12			01: Break	
				contact	

Response time of outputs

You can set the response time of digital outputs 11 and 12 between 0 and 100 s. The On- and off-delay can be adjusted separately.

Example:

Figure 111: Output signal

(1) Output signal without delay

② Output signal with on-delay

③ Output signal with off-delay

(4) Output signal with on- and off-delay

(5) When the output signal is lower than the On-delay, the output is not activated.

(6) The off-delay is activated regardless of the signal duration.

t₁: On-delay

 t_2 : Off-delay

PNU	Designation	RUN	b031 = 10	Value	Function	DS
C144	Digital output 11 – deceleration time (On)	-	✓	0100 s	Delay on energization	0.0
C145	Digital output 11 – deceleration time (Off)	-	✓	0100 s	Delay on power off	0.0
C146	Digital output 12 – deceleration time (On)	-	✓	0100 s	Delay on energization	0.0
C147	Digital output 12 – deceleration time (Off)	-	✓	0100 s	Delay on power off	0.0

Signalling relay K1 (terminals K11, K12, K14)

At zero voltage, contacts K11-K12 are closed. When the supply voltage is applied, signalling relay K1 is activated (K11-K14).

By default, the signalling relay is switched off when a fault occurs. With PNU C026 you can change the assigned signal. The relay contact (changeover contact) can be connected directly into control circuits ($24 V = -230 V \sim$) (\rightarrow section "Connecting a signalling relay", page 42).

→ Signalling relay K1 closes when supply voltage is applied to contact K11-K12. When a fault occurs, the contact opens. Fault signals must be reset with the Reset command (RST) or with a disconnection of the supply voltage.

Figure 112: Signalling relay K1

Default setting	of the signalling	relay		Reconfigured signalling relay terminals (PNU 036 = 00)			
Fault or DF51	witched off	Run signal	Run signal			Run signal or DF51 switched off	
K11 K14 K12		K11 K14 K12		K11 K14 K12		K11 K14 K12	
Voltage	Operating state	K11-K12	К11-К14	Voltage	Operating state	K11-K12	K11-K14
On	Normal	Open	Closed	On	Normal	Closed	Open
On	Fault	Closed	Open	On	Fault	Open	Closed
Off	_	Closed	Open	Off	_	Closed	Open

Table 34: Functions of the signalling relay

PNU	Designation	RUN	b031 = 10	Value	Function	DS
C026	Relay K1 –	-	-	00	RUN: In operation	05
	signal			01	FA1: Frequency reference value reached	
				02	FA2: Frequency signal – output frequency exceeds value in PNU C042 (during acceleration ramp) or PNU C043 (during deceleration ramp).	
				03	OL: Overload warning – motor current exceeds value in PNU C041.	
				04	OD, PID control: Reference/actual value difference exceeds signalling threshold set with PNU C044.	
				05	AL: Fault – fault/alarm signal	
				06	Dc: Warning – reference value at input O (0 to $+10$ V) lower than value in PNU b082 or current signal at input OI below 4 mA. (reference value signal interrupted)	
				07	FBV: PID control – actual value monitoring (PV) signal on breach of limit values PNU C052/C053. (actual value signal interrupted)	
				08	NDc: Fault/warning dependent on PNU C077 – communication watchdog timer has expired: communications are faulty.	
				09	LOG: Shows result of logic link performed through PNU C143. (High, Low)	
				10	ODc: Fault/warning: Communication overload or interrupted (with optional DE51-NET-CAN, DE51-NET-DP).	
C036	Relay K1 (K11-	-	-	00	Normally open contact (NO)	01
	K12) — logic			01	Normally closed contact (NC)	

Response time

You can set the response time of signalling relay K1 between 0 and 100 s. The On- and off-delay can be adjusted separately.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
C148	Relay K1 – deceleration time (On)	-	_	0100 s	Delay on energization	0.0
C149	Relay K1 – deceleration time (Off)	-	_	0100 s	Delay on power off	0.0

→ figure 111, page 108

RUN signal

The RUN signal is issued when an enable signal (FWD/REV) is applied. With the set deceleration ramp, the RUN signal remains active until the output frequency has reached 0 Hz.

Figure 113: Function chart for RUN "operational"

- *f*₂: Output frequency
- 1 Starting frequency defined with PNU b82

Figure 114: Digital output 12 configured as RUN (Run signal)

By default, RUN is assigned to digital output 12.

- Configure one of the digital outputs 11 or 12 as RUN by entering the value 00 under PNU C021 or C022, or under PNU C026 for signalling relay K1.
- \rightarrow section "Increased starting frequency" on page 69.

Frequency value signal (FA1/FA2)

Signal FA1 (FA = Frequency Adjustment) is issued when the output frequency is the same as the reference frequency.

Figure 115: Digital output 11 configured as FA1 (frequency reached)

To ensure system hysteresis, signals FA1 and FA2 are activated each time the actual frequency is 0.5 Hz short of the reference value or the frequency set under PNU C042 and deactivated 1.5 Hz past the reference value or the frequency set under PNU C043.

Figure 116:Function chart for FA1 (frequency reached)

*f*₀: Output frequency F001:Reference value

The digital output configured as FA2 becomes active when the frequency falls below the frequency set under PNU C042. FA2 is deactivated as soon as the actual frequency falls below the value set in PNU C043. The frequency specified with PNU C042 must be higher than the frequency in PNU C043. If PNU F001 or PNU A020 is used for the reference input, the frequency set with PNU C042 can be smaller than the value in PNU C043 (\rightarrow fig. 117).

 f_0 : Output frequency

- If you configure a programmable digital output as FA2, you must also, under PNU C042, enter the frequency from which the FA2 signal is active during acceleration.
- ► With PNU C043, set the respective frequency which is to remain active until the FA2 signal is deactivated during deceleration.
- ► Then, program one of the digital outputs 11 or 12 as the FA1 or FA2 output by setting PNU C021 or PNU C022 to 01 for FA1 or 02 for FA2.

By default, FA1 is assigned to digital output 11.

→ The transition of an FA1 or FA2 signal from the inactive to the active state takes place with a delay of about 60 ms.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
C042	Output function – signalling threshold for frequency signal FA2 during acceleration	-	V	0400 Hz	FA2 FA2 FA2 FA2 FA2 FA2 FA2 FA2 FA2 FA2	0.0
C043	Output function – signalling threshold for frequency signal FA2 during deceleration				The digital output (11 or 12) configured as FA2 remains active as long as the actual frequency remains higher than the frequency entered during deceleration (\rightarrow also the illustration for PNU C042).	

Monitoring functions

The functions described here are used to monitor the power section for overload and to protect the connected motor.

Limiting motor current

If the output current (= motor current, I_M) exceeds the value set with PNU b022 (b222), the output frequency (rotating field frequency) is reduced. You can set the deceleration time constant with PNU b023 (b223).

Attention!

Note that the current limit cannot prevent a fault message and shutdown due to a sudden overcurrent (e.g. caused by a short-circuit).

Figure 118: Current limit enabled (1) Deceleration time constant (PNU b023/b223) b022 (b222): Tripping current limit *I*_M: Motor current

With PNU b028 (b228) you can match the current limitation to the process. The reference frequency must be provided digitally through:

- Digital inputs 1 to 5:
 - Fixed frequency (f1 to f₁₅)
 - Electronic motor potentiometer (UP, DWN)
- Keypad
 - Fixed frequency PNU A020
 - Electronic motor potentiometer: Arrow keys Í and \sim .

With an analog 0 to +10 V reference value signal (terminal O-L) you can adjust current limitation (I_{LVL}) in a range from 10 to 150 % of the rated device current (I_e). The change of the analog current limitation is delayed by 100 to 200 ms by the "sampling time" (1) (internal process time of CPU and controller).

Figure 120: Variable overload limitation

(1) Sampling time (internal processing time of CPU and controller)

Suppressing overcurrent stopping

In applications with highly dynamic drives and rapid load changes, motor current limitation (PNU b020 to b028) can not prevent sudden overcurrents. The result is a motor stop with the fault message E 01 to E 03.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b021	Motor current	or current – 🗸 00 Off: Disabled		00	Off: Disabled	01
b221	limitation – function			01	On: Enabled in acceleration phase and at constant speed	
	h022 Motor current			02	Enabled only at constant speed. This allows higher acceleration currents for short periods.	
b022	Motor current	-	\checkmark	Default,	Setting range of the tripping current as a multiple of the frequency	$I_{\rm e} \times$
b222	limitation, tripping current			dependent on frequency inverters's rated current (le)	inverter rated current, i.e. the range is given in amperes (A).	1.5
b023	Motor current	-	\checkmark	0.13000 s	When specified current limit is reached, the frequency is reduced in the	1.0
b223	limitation, deceleration time constant				time set here. Attention: If possible, do not enter a value below 0.3 here!	
b028	Motor current	-	\checkmark	00	Value of PNU b022 (constant tripping current limit)	00
b228	limitation, limit current selection			01	Analog input O-L (variable tripping current limit) Externally adjustable current limitation $(010 \text{ V} \rightarrow 10150 \% I_e)$	

 $I_{\rm e} =$ inverter rated current

Overload signal (OL)

The overload signal (OL) is output when the current value set with PNU C041 is exceeded.

IM: Motor current

- To configure digital output 11 or 12 or signalling relay K1 as OL, define the current under PNU C041 at which, when exceeded, the OL signal is activated.
- ► Then configure one of the outputs 11 or 12 as OL by entering the value 03 under PNU C021 or C022, or under PNU C026 for signalling relay K1.

Figure 122: Digital output 11 configured as an OL (overload signal)

PNU	Designation	RUN	b031 = 10	Value	Function	DS
C041 C241	Output function – warning threshold for overload signal (OL)	-	✓	$02 \times I_e$ [A] Default, dependent on frequency inverter's rated current (I_e)	The current value entered here determines when the OL signal should be activated.	<i>I</i> _e 1)

1) Frequency inverter rated current

Thermal overload

Using an electronically simulated bimetallic strip, the DF51 frequency inverters can provide thermal monitoring of the connected motor. With PNU b012, match the electronic motor protection to the motor's rated current. If the values entered here exceed the rated motor current, the motor cannot be monitored with this function. In this case, PTC thermistors or bimetal contacts in the motor windings must be used.

Adjust the current indicated by PNU d002 to the current drawn by the motor. The current indicated under PNU d002 forms the basis for calibrating the electronic motor protection.

Attention!

At low motor speeds, the output of the motor cooling fan is diminished, and the motor may overheat despite its electronic overload protection. You should therefore provide protection with PTC thermistors or bimetal contacts.

Use PNU b013 to match the overload protection to your load conditions. You have three options (\rightarrow fig. 123 to fig. 125):

- Enhanced motor protection; value: 00
- Normal motor protection; value: 01 (default)
- Adjustable overload protection; value: 02

Figure 123: Enhanced overload protection (PNU b013 = 00)

Figure 124:

Normal overload protection (PNU b013 = 01)

Figure 125: Adjustable overload protection; value (PNU b013 = 02)

PNU	Designation	RUN	b31 = 10	Value	Function	DS		
b012 b212	Thermal overload, tripping current	-	~	Depending on frequency inverter's rated current (I_{e})1)	Setting range of the tripping current as a multiple of the frequency inverter rated current, i.e. the range is given in amperes (A).	XX		
b013	Thermal overload, characteristic	-	✓	improve thermal	The electronic thermal protection of the motor in the low speed range can be increased to improve thermal monitoring of the motor at low frequencies. I_2 : Output current			
b213	(torque curve)			00	Reduced torque 1			
				01	Constant torque			
				02	Reduced torque 2			

1) Frequency inverter rated current

Thermistor (PTC)

You can configure digital input 5 as PTC thermistor input. The PTC thermistor connected to terminal 5 and L monitors the motor's temperature. If the resistance of the thermistor rises above 3000 Ω (±10 %), the motor is stopped and fault signal E35 is issued.

Figure 126: Digital input 5 configured as PTC (thermistor input)

Figure 127: Characteristic of a PTC thermistor

- ► Configure digital input 5 as PTC by setting PNU C005 to 19.
- → The PTC thermistor can be connected only to digital input 5; digital inputs 1 to 4 can not be used.
- → If digital input 5 is configured as PTC, but no thermistor is connected, fault message E 35 is displayed.

If the DF51 has issued fault signal E 35 and you want to reconfigure digital input 5, which is configured as PTC, do the following:

- ► Connect a link between digital input 5 and terminal L.
- ► Press the Stop key to acknowledge the fault message.
- You can now assign a new function to digital input 5 under PNU C005.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
C085	Thermistor compensation (digital input 5)	~	✓	0200 %	Compensation for thermistor connection.	100

Supply voltage (POWER)

The DF51 frequency inverters can be supplied with AC voltage (50/60 Hz mains voltage) or DC voltage. In both cases the energy is loaded into the internal DC link where it is stored in capacitors. The internal DC link, in turn, supplies the switched-mode power

supply, generating the required control voltage for the electronics, the reference voltage (+10 V) and the voltage for the control signal terminals (+24 V). Charging of the internal DC link and correct operation of the switched-mode power supply is indicated by the red POWER LED.

Device series	Mains connectio	n (50/60 Hz)	DC voltage	
	Terminals	Voltage	Terminals	Voltage
DV51-320	L1, L2, L3	3 ~ 230 V (180 V - 0 % to 264 V + 0 %)	DC+, DC-	201374 V "Voltage too low" signal 190 V ±10 V
DV51-322	L/L1, L3/N	1 ~ 230 V (180 V - 0 % to 264 V + 0 %)		Overvoltage signal 395 V ±20 V
	L/L1, L2, L3/N	3 ~ 230 V (180 V - 0 % to 264 V + 0 %)		
DV51-340	L1, L2, L3	3 ~ 400 V (342 V – 0 % to 528 V + 0 %)	DC+, DC-	416749 V "Voltage too low" signal 395 V ±20 V Overvoltage signal 790 V ±40 V

With PNU b001 to b005 you can define the frequency inverter's behaviour when an undervoltage signal (E 09) is detected.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b001	POWER, restarting mode after	-	v	00	Fault signal E 09, automatic restart at 0 Hz. Fault signal E 09. When you acknowledge the fault signal (RST or Stop key on the keypad), the drive automatically starts up again with 0 Hz.	00
	power supply interruption			01	Automatic restart at set starting frequency after expiry of time set with PNU b003.	
				02	After the time set with PNU b003 has elapsed, the frequency inverter synchronizes to the current motor rotation speed and the motor is accelerated to the reference current in the set ramp times.	
				03	After the time set under PNU b003 has elapsed, the inverter synchronizes to the current motor rotation speed and the motor brakes to a stop in the set deceleration time. A fault message is then displayed	
b002	POWER, permissible power supply downtime	-	√	0.325 s	Here, you set a time duration during which the undervoltage condition is met without the corresponding fault message in PNU E 09 being initiated.	1.0
b003	POWER, waiting time before automatic restart after power supply failure	-	✓	0.3100 s	Here, set a time which is to expire before an automatic restart is initiated after a fault signal. This time can also be used in conjunction with the FRS function. During the delay, the following message appears on the LED display:	1.0

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b004	POWER, fault signal on intermittent supply voltage failure or undervoltage	-	~	00 01	Off: Disabled. No fault message is issued. On: Enabled. In the event of an intermittent power supply failure or undervoltage, the frequency inverter goes into fault status (E 09).	00
b005	POWER, number of automatic restarting attempts after intermittent supply voltage failure or undervoltage	-	✓	00	16 restart attempts on intermittent supply voltage failure or undervoltage. The number of restart attempts is not limited.	00

External fault signal (EXT)

A digital input configured as EXT allows the direct inclusion of external monitoring devices (temperature and vibration monitoring, limit switches, etc.).

When the digital input configured as EXT is activated, fault message E12 is issued and output through the communication interface (RS 485/Modbus). The fault message remains active even if the EXT input is deactivated again and must be acknowledged with a reset.

A reset can be carried out with:

- the RST input or
- the Stop key.
- Alternatively, the supply voltage can be switched off and on again.

Figure 128: Digital input 1 configured as FWD (start/stop clockwise operation), 3 as EXT (external fault signal) and 5 as RST (reset)

Figure 129: Function chart for EXT (external fault message)

NM: Motor speed

K14: Signalling relay contact K11/K14

① Motor coasts to a stop.

 Configure one of the digital inputs 1 to 5 as EXT by entering the value 12 under the corresponding PNU (C001 to C005).

Attention!

After a reset, the motor restarts immediately if a start signal (FWD or REV) is active.

Unattended start protection (USP)

If the digital input configured as USP is activated, unattended start protection is also activated. This prevents a restart of the motor when the voltage recovers after a mains fault while a start signal (active signal on FWD or REV) is present. Fault message E13 is issued. E13 is cancelled by pressing the Stop key or with an active signal on the RST input. Alternatively, the start signal can be revoked.

Figure 130: Digital input 1 configured as FWD (start/stop clockwise operation) and digital input 3 as USP (unattended start protection).

Figure 131: Function chart for USP (unattended start protection)

- U_N: Supply voltage
- K14: Signalling relay contact K14
- *f*₀: Output frequency
- ① Revoke start signal (alarm no longer present)
- (2) Start signal

► Configure one of the digital inputs 1 to 5 as USP by entering the value 13 under the corresponding PNU (C001 to C005).

Warning!

If unattended start protection is triggered (fault message E13) and the fault message is acknowledged with a reset command while a start signal is still active (input FWD or REV active), the motor will restart immediately.

- → If you issue a start signal within three seconds of reestablishing the power supply and unattended start protection is active, the unattended start protection is also triggered and issues fault message E13. When unattended start protection is used, you should therefore wait for at least three seconds before issuing a start signal to the frequency inverter.
- Unattended start protection can still be activated when you issue a reset command through the RST input after an undervoltage fault message (E09) has occurred.

Braking

Braking is the slowing down of a drive system to standstill or a specific lower speed within a specified time. Braking can take place mechanically (using a friction brake) or electrically (DC braking or braking choppers).

The DF51 devices allow the following braking methods:

- Actuation of an external mechanical holding brake through relay K1 (→ section "Signalling relay K1 (terminals K11, K12, K14)", page 109) or a digital output (→ section "Parameterizable digital outputs", page 107).
- DC braking: applying direct current to the three-phase motor
- Regenerative braking

DC braking (DCB)

To activate DC braking for decelerating the motor, do the following:

- apply a stop signal (PNU A051 = 01) or
- activate the digital input configured as DCB.

Figure 132: Digital input 1 configured as FWD (start/stop clockwise rotating field), input 2 as REV (start/stop anticlockwise rotating field) and input 5 as DCB (DC braking).

By applying a pulsed DC voltage to the motor stator, a braking torque is induced in the rotor and acts against the rotation of the motor. With DC braking, a high level of stopping and positioning accuracy can be achieved.

Under PNU A051, define whether DC braking is to be activated automatically when the frequency set under PNU A052 is reached and/or when the DCB input is activated.

Under PNU A052 enter the frequency at which DC braking is activated when PNU A051 is 00.

Under PNU A053, enter the waiting time which is to elapse before DC braking becomes active after activation of the DCB input or when the set startup frequency is reached.

Under PNU A054 enter the braking torque between 0 and 100 %.

In PNU A055, enter the DC braking duration.

Under PNU A056 specify the braking behaviour when the DCB input is active:

- 00: DC braking starts when the DCB input is activated and ends only when the time defined under PNU A055 has expired.
- 01: Braking starts as soon as the DB input is active and ends when the DCB input is deactivated.

DC braking can also be activated before motor acceleration, for example in lifting and conveying applications (releasing the mechanical holding brake) or with drives which are operated using process variables, such as fans, pumps and compressors.

Attention!

DC braking results in additional heating of the motor. You should therefore configure the braking torque (PNU A054) as low and the braking duration (PNU A055) as short as possible.

Figure 133: Function chart for DCB (DC braking)

- f_0 : Output frequency
- t: Waiting time PNU A053
- ① Start signal through keypad
- Configure one of the digital inputs 1 to 5 as DCB by entering the value 07 under the corresponding PNU (C001 to C005).
- ► In PNU A053, enter a delay time t (→ fig. 133) from 0 to 5.0 s, which is to expire before DC braking takes effect after activation of the DCB input.
- ▶ Under PNU A054, set a braking force between 0 % and 100 %.

PNU	Designation	RUN	b031 =10s	Value	Function	DS
A051	DC braking	-	\checkmark	00	Off: Disabled	00
				01	On: Enabled	
A052	DC braking – starting frequency	-	√	060 Hz	When PNU A51 is set to 01, DC braking is activated when the actual frequency falls below the frequency entered here.	0.5
A053	DC braking — waiting time	-	\checkmark	05 s	When the frequency set with PNU A052 is reached, the motor coasts for the time duration entered here before DC braking is activated.	0.0
A054	DC braking – braking torque	-	✓	0100 %	Adjustment range for the level of braking torque.	0.
A055	DC braking – braking duration	-	√	060 s	The time during which DC braking is active.	0.0
A056	DC braking –	-	\checkmark	00	Timed braking according to value of PNU A055	01
	behaviour on activation of the digital input (DB)			01	Continuous operation	

Regenerative braking

In regenerative braking, the energy from the motor is fed back into the internal DC link of the DF51. There, this energy increases the DC link voltage. The DF51 monitors the highest permissible DC link voltage. At excessive values, the DF51 switches off with fault signal E07. The regenerative energy flow can be reduced with longer deceleration times ($T_b = PNU F003$, \rightarrow page 74).

To avoid overtemperatures in the inverter:

- The proportion of regenerative braking (T_b) to the operating cycle (T_c) should not exceed 10 %.
- The times for T_b and T_c should be $\geq~0.1$ s.
- The time for T_b should be $\ \leq 10$ s.

Figure 134: Braking time (T_b) / cycle time (T_c)

A higher dynamic braking power allows extreme braking devices (DE4-BU4-1) with braking resistors or the use of vector frequency inverters (DV51, DV6) with built-in braking transistors and braking resistors.

Mathematical and logic functions

The DF51 can establish mathematical links (CAL) between two analog inputs and logic links (LOG) between two digital inputs.

Mathematical functions

With PNU A143 you can establish a mathematical link between two input signals (A and B). With PNU A142 select an input signal as value A and with PNU A143 a second input signal as value B.

Figure 135: Mathematical linking of A and B

The result (CAL) is available as reference frequency (F-COM) in PNU A001 or as process variable (PV=) for PID control in PNU A075.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A141	Calculator –	-	\checkmark	00	Keypad value	02
	select input A			01	Keypad potentiometer	
				02	Analog input (0)	
				03	Analog input (OI)	
				04	Serial interface (Modbus)	
A142	Calculator –	•	\checkmark	00	Keypad value	03
	select input B			01	Keypad potentiometer	
				02	Analog input (0)	
				03	Analog input (OI)	
				04	Serial interface (Modbus)	
A143	Calculator –	-	\checkmark	00	Addition (A + B)	00
	operation			01	Subtraction (A – B)	
				02	Multiplication (A \times B)	

Frequency offset (ADD)

In PNU A145 you can save a frequency offset and add it to or subtract it from the specified reference frequency with PNU A146.

 Configure one of the digital inputs 1 to 5 as ADD (add frequency) by entering the value 50 under the corresponding PNU (C001 to C005). The reference frequency source is selected with PNU A001. By default the activation of digital input ADD adds the frequency offset to the reference frequency. With PNU A145 = 01 the frequency offset is subtracted.

Figure 136: Mathematical linking of reference frequency and offset

PNU	Designation	RUN	b031 = 10	Value	Function	DS
A145	Calculator – offset frequency	√	\checkmark		0400 Hz Frequency offset for addition to or subtraction from reference frequency (→ PNU C001 = 50: ADD)	0.0
A146	Calculator – offset frequency, prefix	-	✓	00 01	Plus, adds the value of PNU A145 to the reference frequency (→ selection PNU A001, page 81) Minus, subtracts the value of PNU A145 from the reference frequency (→ selection PNU A001, page 81)	00

→ When adding reference frequency and offset, the maximum output frequency is limited by the value in PNU A004 (→ section "End frequency", page 68).

Example: PNU A145 = 20 Hz, A004 = 50 Hz, A146 = 00, A001 = 0...50 Hz.

In the range 0 to 30 Hz the full frequency offset (20 Hz) is added to the reference frequency (PNU A001). In the range 30 to 50 Hz only the value that applies up to the end frequency (PNU A004) is added, for example 40 Hz + 20 Hz \rightarrow 50 Hz (limited).

' Attention!

Automatic change of direction on subtraction (PNU A146 = 01) when the frequency offset set with PNU A145 is greater than the reference frequency.

Example: PNU A145 = 20 Hz, A146 = 01, A001 = 0...50 Hz.

In the range 20 to 50 Hz the frequency offset (20 Hz) is subtracted from the reference frequency (PNU A001). If the reference frequency is set below 20 Hz, the direction of rotation is automatically reversed and the drive is adjusted to the differential value, for example 10 Hz (FWD) – 20 Hz (PNU A145) = 10 Hz (REV).

Logic functions

With PNU C143 you can establish a logic link between two digital signals (A and B). PNU C141 specifies signal A and PNU C142 signal B.

Figure 137: Logic linking of A and B

The table below lists the possible logic links:

Signal		Logic lin	Logic link (LOG)			
Α	В	AND	OR	XOR (exclusive or)		
0	0	0	0	0		
0	1	0	1	1		
1	0	0	1	1		
1	1	1	1	0		

You can assign the result of this logic link (LOG) to a digital output with PNU C021, C022 or C026.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
C141	Logic function	-	-	00	RUN: In operation	00
	– select input A			01	FA1: Frequency reference value reached	
				FA2: Frequency signal – output frequency exceeds value in PNU C042 (during acceleration ramp) or PNU C043 (during deceleration ramp).		
				03	OL: Overload warning – motor current exceeds value in PNU C041.	
				04	OD, PID control: Reference/actual value difference exceeds signalling threshold set with PNU C044.	
				05	AL: Fault – fault/alarm signal	
				06	Dc: Warning – reference value at input O (0 to $+10$ V) lower than value in PNU b082 or current signal at input OI below 4 mA.	
				07	FBV: PID control – actual value monitoring (PV) signal on breach of limit values PNU C052/C053.	
				08	NDc: Fault/warning dependent on PNU C077 – communication watchdog timer has expired: communications are faulty.	
				10	ODc: Fault/warning: Communication overload or interrupted (with optional DE51-NET-CAN, DE51-NET-DP).	
C142	Logic function	-		00	RUN: In operation	01
	– select input B			01	FA1: Frequency reference value reached	
				02	FA2: Frequency signal – output frequency exceeds value in PNU C042 (during acceleration ramp) or PNU C043 (during deceleration ramp).	
				03	OL: Overload warning – motor current exceeds value in PNU C041.	
				04	OD, PID control: Reference/actual value difference exceeds signalling threshold set with PNU C044.	
				05	AL: Fault – fault/alarm signal	
				06	Dc: Warning – reference value at input O (0 to $+10$ V) lower than value in PNU b082 or current signal at input OI below 4 mA.	
				07	FBV: PID control – actual value monitoring (PV) signal on breach of limit values PNU C052/C053.	
				08	NDc: Fault/warning dependent on PNU C077 – communication watchdog timer has expired: communications are faulty.	
				10	ODc: Fault/warning: Communication overload or interrupted (with optional DE51-NET-CAN, DE51-NET-DP).	
C143	Logic function	-	-	00	[LOG] = A AND B, AND sequence	00
	– select link [LOG]			01	[LOG] = A OR B, OR sequence	
	[200]			02	[LOG] = A XOR B, Exclusive OR sequence	

PID control

The DF51 frequency inverters have a PID controller, which you can enable with PNU A071 = 1 or through a digital input (PNU C001 to C005 = 23, PID).

Figure 138: Block diagram, PID control (cont.: \rightarrow fig. 139)

- (1) w = reference value channel
- (2) x = actual value channel (process variable PV)
- (3) Analog input matching \rightarrow page 3 ff.

Figure 139: Block diagram, PID control (cont. from fig. 138)

- (1) w = reference value channel
- (2) x = actual value channel (process variable PV)
- $(\ensuremath{\mathfrak{I}})$ Manipulated variable (output frequency)
- → PID control is superimposed on the frequency inverter function. You should therefore set all of the frequency inverter's drive-related parameters, such as maximum output frequency (motor speed), acceleration and deceleration ramps (mechanical load, belts). Frequency inverter and motor are process-integrated actuators. The output frequency to the motor (which determines the speed) is specified as manipulated variable from the PID controller.
- → When PID control is enabled, the reference and actual values become process variables and are automatically converted into percentages. The specified reference value (0...100 %) corresponds with, for example, a volume flow rate (0...50 m³/h). The process variable is the reading (m³/h) from a sensor and is again evaluated as a percentage (0...100 %). If this process data is to be output as a physical unit (m³/h) you can set the conversion with PNU A075 (→ section "Display factor (PNU A075)", page 130).

PNU	Function	RUN	b031 = 10	Value	Function	DS	
A001	Auswahl der Quelle für den Sollwert	-	-	00	 The setting range is limited by PNU b082 (raised starting frequency) and A004 (end frequency). Potentiometer (optionale Bedieneinheit DEX-KEY-6) Frequency [Hz] Process variable [%] with active PID control (PNU A071 = 1) 	01	
				01	Analog-Eingang: Steuerklemmen O und OI	-	
				02	Set value (PNU F001) of the keypad (arrow keys //~). To save the set value, press the ENTER key (PNU A020).		
				03	Serielle Schnittstelle (Modbus)	-	
				10	Calculator: Calculated value (CAL) (\rightarrow section "Rechenfunktionen", page 1).		
A071	PID-Regler	-	\checkmark	Activating PID c	ontrol	00	
				00	OFF, inaktiv	-	
				01	ON, aktiv	-	
A072	PID-Regler, P-Anteil	✓	✓	0.2 - 5.0	 Proportional gain (K_P) Low values attenuate the control action. High values can cause oscillation. 	0.1	
A073	PID-Regler, I-Anteil	\checkmark	\checkmark	0.0 - 150 s	Integral time constant	0.1	
A074	PID-Regler, D-Anteil	\checkmark	\checkmark	0.00 - 100 s	Differential time constant	0.01	
A075	PID-Regler, Anzeigefaktor	-	\checkmark	0.01 - 99.99	Actual value indication, multiplication factor for displaying process variables.	1.00	
A076	PID-Regler, Eingang Istwertsignal PV	-	✓	Selection of actual value input			
				00	Analog-Eingang OI (4 20 mA)	-	
				01	Analog-Eingang O (0 10 V)		
				02	Serielle Schnittstelle (Modbus)		
				10	berechneter Wert (PNU A143) (> section "Rechenfunktionen", page 1)	-	
A077	PID-Regler,	-	\checkmark	00	OFF, inaktiv, Sollwert (+), Istwert (–)	00	
	Eingangssignale invertieren			01	ON, aktiv, Sollwert (–), Istwert (+)		
A078	PID-Regler, Ausgangssignal Begrenzung	-	v	0.0100 %	Percentage limitation of PID control output	0.0	
d004	Anzeige PID- Rückkopplung	✓	V	-	Indication only with active PID control (PNU A071 = 01). The display factor is set with PNU A075. 0.00 – 99.99 (0.01 %) 100.0 – 999.9 (0.1 %) 1000 – 99999 (1 %)	-	
F001	Sollwert, Vorgabe über optionale Bedieneinheit DEX-KEY	✓	✓	-	 Frequenz: 0.0 – 400 Hz (0.1 Hz) Prozessgröße 0.00 bis 9999 % bei aktiviertem PID-Regler (A071 = 01) mit Anzeigefaktor (A075). 	0.0	

Configuring PID control

→ For examples for reference/feedback value input with PID control and for inverted PID control, see→ section "Beispiele zur Soll-/Istwertvorgabe beim PID-Regler" on page 1.

Actual value

Process variable (PV = actual value x) feedback requires an analog input:

- voltage signal: 0...+10 V ---→ input O or
- current signal: 4...20 mA → input OI.

The selection is made with PNU A076 and also assigns the other, previously unassigned, analog input as reference value input (if PNU A001 = 01).

→ Analog reference/feedback values input interfacing at terminals "O" (0...+10 V) and "OI" (4...20 mA) always takes place with a positive signal.

Reference value

The analog reference value input is automatically assigned through the selection of the analog actual value input. In addition to this automatic assignment, you can select other reference value sources with PNU A001.

PNU A001	Reference value source
00	Potentiometer of the LCD keypad
02	Input through PNU F001 or as fixed value PNU A020 to A035 (binary-encoded selection FF1 to FF4 through digital input 1 to 6).
03	Serial interface (Modbus)
10	Calculator (calculated value of CAL)

The fixed values (PNU A020 to A035) have priority over all other reference value sources.

The reference values are given as a percentage (0 to 100 %) except for PNU F001 and the fixed values PNU A020 to A035, which are given as specified in PNU A075.

Output limitation (PNU A078)

The PID controller has an automatic output limit function. It monitors the percentage deviation of the manipulated variable (output frequency) from the control difference (e = reference value – actual value). You can specify the limit value with PNU A078. This setting can be made only at the lower and upper operating frequency limits (\rightarrow section "Minimale und maximale Betriebsfrequenz", page 2).

Figure 140: PID control – limitation of minimum output frequency

① Limitation active

② System deviation (reference value – actual value)

A078: Percentage limit value.

- If the system deviation (reference value actual value) is less than or equal to the value set with PNU A078, the controller works within its normal, linear range.
- If the system deviation is greater than the value set with PNU A078, the controller changes the output frequency so that the limit value is not reached.
- The polarity of the system deviation can be set PNU A077.

Inversion (PNU A077)

In typical control applications, such as heating and ventilation control systems, an increase in power consumption is the result of a rising actual value (system deviation = reference value minus actual value). In cooling systems, increased power consumption results from a falling (negative) actual. With PNU A077 you can set the polarity of the system deviation.

Display factor (PNU A075)

When PID control is enabled (PNU A071 = 01), the reference and actual values become process variables and are automatically converted into percentages. The specified reference value (0...100 %) corresponds with, for example, a volume flow rate (0...50 m³/h). The process variable (PV) is the reading (m³/h) from a sensor and is again evaluated as a percentage (0...100 %).

With PNU A075 you can scale the displayed value so that the process data is displayed in its physical units, in this case m³/h. The reference value is output at PNU F001 and the actual value at PNU d001.

Activating and deactivating PID control (PID)

With a digital input configured as PID, PID control can be switched on and off through control signal terminals. When you activate the PID input, PID control is disabled. The frequency inverter then works with its standard frequency control again.

	•
	1

 This function is available only when PID control is active (PNU A071 = 01).

Do not switch the PID controller on and off while the frequency inverter is in RUN mode (RUN LED is lit).

- Configure one of the digital inputs 1 to 5 as PID by entering the value 23 under the corresponding PNU (C001 to C005).
 - The Activate/Disable PID Control function is optional. If you want PID control to be active all the time, you only need to set PNU A071 to 01.

With the digital input configured as PIDC, the integral component of the PID control can be reset. If the PIDC input is activated, the integral component is reset to zero.

- ► Configure one of the digital inputs 1 to 5 as PIDC by entering the value 24 under the corresponding PNU (C001 to C005).
- Do not reset the integral component of the PID controller while the frequency inverter is in RUN mode (RUN LED is lit), as this can cause overcurrent tripping and rapid deceleration, resulting in unpredictable operating states.

Figure 141: Digital input 1 configured as FWD (start/stop clockwise operation), input 2 as PID (activate/deactivate switch PID control) and input 3 as PIDC (reset integral component)

PID-system deviation (OD)

The PID-system deviation (e) is the difference between reference and actual value (process variable PV).

The digital output configured as OD is activated when PID control is active (PNU A071 = 01) and a user-definable system deviation (PNU C044) is exceeded. The OD output remains active as long as this limit value is exceeded.

- ► To configure a parameterizable digital output (11 or 12) or signalling relay K1 as OD, define the limit value under PNU C044 above which the OD signal is activated.
- Configure one of the digital outputs (11, 12) as OD by entering the value 04 under PNU C021 or C022, or under PNU C026 for signalling relay K1.

Figure 142: Digital output 11 configured as OD "PID system deviation"

Figure 143: Function chart for OD (PID system deviation)

- (1) Reference value
- Actual value

PNU	Designation	RUN	b031 = 10	Value	Function	DS
C044	Output function: Signalling threshold, maximum PID control deviation	_	✓	0100 %	If the deviation between the reference and actual value exceeds the value entered here when PID control is active (PNU A071 = 01), the OD signal is activated.	3.0

Examples for reference/feedback value input in PID control

Figure 144: Analog reference/feedback value input

FWD: Clockwise rotating field enable

① Reference value (w), setpoint potentiometer 0...10 V

(2) Feedback value (x), current feedback value 4...20 mA

Figure 145: Digital reference/feedback value input

FWD: Clockwise rotating field

1) Digital reference value (w), w1...w3 = fixed reference values f-Fix1...f-Fix3, input through digital inputs 3 and 4

(2) Analog feedback value (x), voltage feedback value 0...+10 V

Inverted PID control (PNU A077)

With parameter A077 you can invert the differential e = w - x (reference value – feedback value), which is typical in I&C.

Figure 146: Standard PIDcontrol: e = w - x

- (1) Reference channel
- (2) Feedback value channel

Figure 147: Inverted PID control: e = -(w - x)

- ① Reference channel
- (2) Feedback value channel

Inverted PID control (PNU A077 = 1) is used in applications in which the feedback value generator supplies an inverted signal. Example: With increasing pressure, a pressure sensor' output signal (+10 V...0 V = 0...max. bar) drops.

Feedback value check signal (FBV)

The FBV (Feedback Value Check) signal is issued when the actual (process) value (PV) drops below the lower limit value (PNU C053) in RUN mode. It remains active until:

- the actual value exceeds the upper limit value (PNU C052).
- the frequency inverter changes from RUN mode to STOP mode (deceleration with the set ramp time).

Figure 148: PID control, feedback value check signal (FBV)

① Output frequency (Hz)

Actual value (process variable – PV)

FWD: Start signal, clockwise rotating field

FBV: Feedback value check signal, limit values PNU C052, C053 exceeded

→ The upper and lower actual value limits (PNU C052, C053) are "process signals": they cannot be used for monitoring the feedback value check signal. FBV is not a fault signal.

With PNU C021 or C022 you can set value 07 (FBV) for a digital output (11, 12) or, with PNU C026, for signalling relay K1 (K11-K12).

With the feedback value check signal (FBV), the DF51's PID controller can provide a direct "two-stage control", as commonly used for ventilation and air conditioning applications.

Example: ventilation system with two fans (frequency inverter). Under normal operating conditions, the maximum output power of fan 1 (M1) is sufficient to maintain the actual value (PV) at the reference value. When fan 1 is fully utilized and additional airflow is required, a second fan (M2) with constant power is a simple solution.

Figure 149: Block diagram, ventilation with "two-stage control"

- 1: Frequency inverter with PID control for fan motor M1
- 2: Motor starter (frequency inverter, soft starter, contactor) for fan motor M2

FWD: Start signal, drive 1 (clockwise rotating field)

FBV: Feedback value check signal from drive 1 for actuating drive 2 PV: Process variable (airflow m³/h) as normalized actual value signal Start: Start signal, drive 2

The control sequence for the example cited here is illustrated by the graph in fig. 148. The process variable and the limit values are shown as a percentage here. The output frequency (Hz) is also shown.

- Start fan motor M1 with FWD signal. The feedback value (PV) lies below the limit value specified with. The FBV output (11, 12, K1) therefore switches to also start fan motor M2.
- The actual value rises and reaches the upper limit (PNU C052). The FBV output is automatically switched off (= fan M2 Off). Fan M1 remains in operation and works in linear control mode. In a correctly set up system, this is the normal operating range.
- ylf the actual value drops below the limit value (PNU C053), the FBV output is switched and fan M2 is activated again to support fan M1.
- When the FWD signal is removed from frequency inverter 1, the inverter goes from RUN to STOP mode and decelerates the drive over the set ramp time.
- When frequency inverter 1 is stopped, the FBV output is automatically de-energized so that fan M2 also stops.

System settings

Stop key

The red Stop key is enabled in all control modes and has the following functions:

- Decelerating (braking) the drive (PNU F003, \rightarrow page 74)
- Resetting fault signals (E xx, → page 181)
- Triggering an initialization (loading default settings, → page 140)

You can adapt the Stop key braking function to your drive with the parameter settings:

- Deceleration ramp 1 (PNU F003/F203, → page 74)
- Deceleration ramp 2 (PNU A093/A293, → page 89)
- Automatic deceleration ramp changeover (PNU A096/A296, → page 90)
- Deceleration ramp characteristic (PNU A098, → page 75)
- DC braking (DEC) or free-run stop (FRS), selection with PNU b091 (→ page 135)

You can also disable the Stop key function with PNU b087.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b087	STOP key (keypad)	-	✓	00	Enabled Disabled: Stop and reset signals are issued only through the control signal terminals or the serial RS 485 interface (Modbus).	00

Behaviour after STOP signal

The behaviour of the DF51 after a STOP signal is specified with PNU b091. The STOP signal can be triggered by pressing one of the STOP buttons (optional keypad DEX-KEY-...) or by switching

off the Enable signal (FWD/REV). With PNU b091 = 01 you must specify how the motor is to be restarted. You can do this with PNU = b088.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b091	b091 Behaviour after - a STOP signal	-	-	00	DEC, braking to 0 Hz with deceleration ramp	00
				01	FRS, free run stop	
b088	Motor restart after removal of the FRS signal	er removal the FRS	\checkmark	00	Restart with 0 Hz	00
				01	Restart with the determined output frequency (current motor speed)	

Interrupting the deceleration ramp -

Excessively short deceleration ramps or high-inertia loads can cause unsynchronized operation during deceleration. The motor then works regeneratively and charges up the internal DC link. Excessive voltage results in fault signal E 07.

With PNU b130 you can automatically stop the deceleration ramp when the DC link voltage reaches an excessive value during deceleration. The switching threshold is defined with PNU b131. Select this function if short deceleration times are required but changing loads necessitate a longer deceleration time.

Alternative: frequency inverter with braking device (DV51), → section "Regenerative braking", page 122.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b130	Internal DC link, stop	-	✓	00	Off: Disabled	00
	deceleration ramp on overvoltage in the internal DC link			01	On: Enabled: When activated, the deceleration ramp is interrupted until the DC link voltage falls below the value set with PNU b131 again.	
b131	Deceleration ramp, switching threshold dependent on internal	~	√	330395 V (<i>U</i> _e = 230 V)	The default setting depends on the frequency inverter's rated voltage (U_e) .	380/760
	DC link voltage			660790 V ($U_e = 400 V$)		

With parameter PNU b130 = 1 you can enable DC link voltage monitoring during deceleration, \rightarrow section "Regenerative braking", page 122. You can adjust the switching threshold with PNU b131. The default values are:

- 380 V for DF51-32...
- 760 V for DF51-34...

When deceleration starts (STOP signal), ① the output frequency f_2 of the DF51 is reduced. If the motor speed is higher than the frequency inverter's output, the motor operates regeneratively and feeds its surplus energy into the internal DC link of the DF51. This increases the DC link voltage. f the DC link voltage exceeds the value b set under PNU b131 ②, the reduction of output frequency f_2 is stopped. The deceleration can resume only when the motor no longer operates regeneratively and the DC link voltage has dropped below the value of PNU b131.

Figure 150: Monitored DC link voltage

 $U_{DC max}$ = greatest permissible DC link voltage: 395 V for DF51-32... 790 V for DF51-34...

Pulse frequency (PNU b083)

The pulse frequency is the operating frequency of the inverter's transistors. It provides pulse-width modulated conversion of DC link voltage in three-phase, sinusoidal AC voltage for the three-phase motor.

You can set the pulse frequency in the range from 2 to 14 kHz.

High clock frequencies result in low operating noise and motor losses but higher losses in the inverter and increased interference on the mains and motor cables (EMC). At an ambient temperature of 40 °C and a clock frequency of 12 kHz the rated current I_e should be limited to 80 % and at 14 kHz to 70 %. If you operate the frequency inverter outside its operating range, itslifespan may be reduced.

 \rightarrow The clock frequency should be increased (b083 > 5 kHz) only if the expected continuous current I_e allows.

All ratings of frequency inverter DF51 are based on the default pulse frequency of 5 kHz.

Figure 151: Rating range

(1) Permissible operating range

(2) Limit value at an ambient temperature of 40 $^{\circ}C$

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b083	Carrier frequency	-	-	214 kHz	Pulse frequency	5.0
b150	Clock frequency, automatic clock frequency reduction on overtemperature	-	√	00	Off: Disabled DF51 continually works with the pulse frequency set with PNU b083	00
_				01	On: Enabled On overtemperature the pulse frequency is automatically reduced to the smallest permissible value (2 or 2.1 kHz).	

Reduced response time (RDY)

The response time is the internal transmission time of a control signal from the time it is issued to the application of voltage at the inverter (motor connection). The mean response time of the DF51 is about 38 ms (for example for the start signal from digital input 1 (FWD) to application of motor voltage. It can vary, however, depending on the signal path and program size.

With PNU b151 you can configure the device to reduce the response time. The frequency inverter then changes directly to RUN mode (RUN LED lit).

Dangerous voltage!

With PNU b151 = 01 the output transistors are activated. Output terminals U-V-W carry dangerous mains voltage, even if the enable signal (FWD/REV) was not yet issued.

➤ With PNU b151 = 01, RUN mode is selected and access to some parameters is disabled.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b151	Inverter, reduce inverter's response time (RDY) to a control signal	~	✓	00 01	OFF ON Transistors active Caution : Dangerous voltage (U-V-W)	00

Figure 152: Digital input 1 configured as FWD (start/stop clockwise rotating field) and digital input 3 as RDY (ready).

To activate the RDY function through one of digital inputs 1 to 5, assign the value 52 (RDY) to the corresponding control signal terminal (PNU C001 to C005).

When you activate the digital input configured as RDY, the transistors in the inverter are activated, filter time constants are minimized and RUN mode is called (RUN LED lit).

Dangerous voltage!

凃

4

The output transistors are activated and dangerous mains voltage is present at output terminals U-V-W, even if the enable signal (here FWD at terminal 1) was not yet issued.

In RUN mode, access to some parameters is blocked.

Figure 153: Example: Start signal and output frequency (response time)

- (1) Start signal through optional DE51-NET-CAN
- (2) Output frequency f₂ (phase L1), e.g. after about 48 ms (without RDY)

Parameter access inhibit (SFT)

When you activate the digital input configured as SFT (terminal 1 to 5), the entered parameter values are write-protected.

Figure 154: Digital input 3 configured as SFT (software protection)

- With PNU b031, specify whether software protection will also apply to the reference frequency input (PNU A020, A220, A021 to A035, A038 and F001).
- ► Then configure one of the digital inputs 1 to 5 as SFT by setting the corresponding PNU (C001 to C005) to 15.

Parameter inhibit (PNU b031)

Parameter inhibit is active when the SFT input is active. Depending on the value of PNU b031, access to some parameters is permitted even with parameter protection activated.

Some parameters cannot be accessed in RUN mode. These are marked "-" in the RUN column. With PNU b031 you can extend parameter access in RUN mode. These additional parameters are marked " \checkmark " in the "b031=10" column.

Parameter inhibit restricts parameter access but does not provide password protection.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b031	Parameter access inhibit	-	\checkmark	00	Access to all parameters except PNU b031 disabled when digital input SFT is enabled (\rightarrow PNU C001: 15).	01
	(access rights)			01	Access to all parameters except PNU b031 and F001 (A020, A220, A021 to A035, A038) disabled when digital input SFT is enabled (\rightarrow PNU C001: 15).	
		02Access to all parameters blocked, except PNU b031.03Access rights to all parameters except PNU b031 and F001 A220, A021 to A035, A038) disabled.	Access to all parameters blocked, except PNU b031.			
			Access rights to all parameters except PNU b031 and F001 (A020, A220, A021 to A035, A038) disabled.			
				10	Extended access rights to parameters in RUN mode.	

Initialization (default settings)

You can perform the following initialization actions:

- Clearing the fault register.
- Restoring the default parameter settings
- Activating country-specific settings.

With the initialization, all parameters are reset to their factory default values.

Figure 155: Initializing the country-specific default settings for Europe

To clear the fault register and/or to restore the default settings, proceed as follows:

▶ Make sure that PNU b085 is set to the correct country version.

Attention!

For DF51-322 and DF51-340 only the value 01 (EU) is permissible, and for DF51-320 only the value 02 (USA).

- ► In PNU b085 enter the value 01 {02} and confirm your input with the ENTER key.
 - → Carry out this initialization step after setting PNU b084 and before pressing any keys only when needed.
- \rightarrow The default settings can be recalled only in STOP mode (\rightarrow PNU b151 = 00, page 138).
- ▶ Under PNU b084 enter the corresponding value (00, 01 or 02).
- ▶ Press the ENTER key to save the value.
- ► On the keypad, press and hold arrow key \checkmark and the PRG key at the same time.
- While holding the arrow and PRG keys, briefly press the Stop key.

The keypad's display shows EU (if b085 = 01) or USA (if b085 = 02).

▶ Now release all keys again.

In the display's left field the individual segments light up in sequence. At the same time, the Hz, START, RUN and the potentiometer LEDs light up. When initialization is completed, all LEDs go out and the display shows d001 (frequency indication).

Initialization is now complete.

You can now press the PRG key to return to the frequency indication (Hz) and ENTER to save this display preference.

PNU	Designation	RUN	b031 = 10	Value	Function	DS
b084	Initializing – function	-	-	00:	TRP: Clear fault register	00
				01:	DATA: Load default settings (DS)	Ī
				02:	ALL: Clear fault register and load default settings (DS)	
b085	Initialization,			00	Japan	01
	country- specific default			01	Europe	- {02}1)
	settings			02	USA	

1) 02 forDF51-320-...

Figure 156: Load default settings (DS)

Debug mode (PNU C091)

Attention! ∇

The parameters and information listed in this section are intended only for specially trained personnel. Any changes to the parameters listed here can cause unpredictable operating states.

During operation, PNU C091 must always contain the → value 00.

With PNU C091 = 01 the parameters listed in the table below are displayed.

PNU	Designation	RUN	b031 = 10	Display and value range	Manipu lated variable	Remark
C091	Debug mode	\checkmark	\checkmark	00: Disabled (do not show parameter)		00
				01: Enabled (display parameter)		
C092	Indication, DC link voltage	\checkmark	\checkmark	0000 - FFFF (do not change)	-	1200
C093	Indication, debug mode	\checkmark	\checkmark	0000 - FFFF (do not change)	-	1200
C094	Indication, debug mode (bit)	\checkmark	\checkmark	Address range 0000 – FFFF \rightarrow 0 – 7 bit selected (do not change)	-	1200
C095	Selected debug mode	\checkmark	\checkmark	00: Internal 01: IO range	-	00
C121	O compensation	-	-	0 - 65535	1.	Default setting
C122	OI compensation	-	-	0 - 65535	1.	Default setting
C123	OI zero compensation	_	-	0 - 65535	1./10.	Default setting
C190	Test safety mode	-	-	00: OFF 01: ON	-	-
C193	Test flag	_	_	0 - 65535	-	-
C194	Test flag mode	-	-	00: Standard 01: Test routine mode 02: Function routine mode	-	-
C195	Initialization, country-coding	-	_	00: Japan 01: Europe 02: USA		
C196	Assigned motor rating	-	_	200 V class • Japan, USA: 0.2; 0.4; 0.75; 1.5; 2.2; 3.7; 5.5; 7.5 [HP] • Europe: 0.2; 0.4; 0.55; 0.75; 1.1; 1.5; 2.2; 3.0; 4.0; 5.5; 7.5 [kW]	-	Default setting
				400 V class • Japan: 0.2; 0.4; 0.75; 1.5; 2.2; 3.7; 5.5; 7.5 [HP] • USA: 0.2; 0.4; 0.75; 1.1; 1.5; 2.2; 3.7; 4.0; 5.5; 7.5 [HP] • Europe: 0.2; 0.4; 0.55; 0.75; 1.1; 1.5; 2.2; 3.0; 4.0; 5.5; 7.5 [kW]		
C197	Voltage class, coding	_	-	00: 200 V class01: 400 V class		Default setting
d101	Indication – scaled o	output fre	quency	0.0 - 400.0	0.1 [Hz]	-
d102	Indication, DC link v	oltage		0.0 – 999.9 (DC+/DC–)	0.1 [V]	-
d104	Indication, thermal l electronics	oad on		0.0 – 100.0	0.1 [%]	-
d106	Indication, MCU nur	mber		0000 – 9999	1	-
d107	Indication, IO MCU	number		0000 – 9999	1	-
d109	Indication, maximur	n DC link	voltage	0.0 – 999.9	0.1 [V]	

6 Serial interface (Modbus)

This section describes the mounting and function of the serial interface.

General information about Modbus

Modbus is a centrally polled bus system in which the master (PLC) controls the entire data flow on the bus. Internode communication between the individual stations (slaves) is not possible.

Every data transfer is initiated by a request from the master. Only one signal at a time can be transferred along the bus line. Slaves cannot initiate a transmission; they can only respond to a request.

Two types of dialog are possible between master and slave:

- The master sends a message to a slave and waits for a response.
- The master sends a message to all slaves and does not wait for a response (broadcast).

The master cyclically polls slaves' fault messages. It is therefore advisable to send device-specific and safetyrelevant fault messages directly through the control signal terminals (for example fault indication relays DF51). Example:

A short-circuit in the motor conductor at the output of the DF51 switches on the mechanical brake directly.

figure 157 shows a typical arrangement with a host computer (master) and any number of DF51 frequency inverters (up to 31 stations). Each frequency inverter has a unique address in the network. The addresses are defined through PNU C072 and independent of their physical position within the network.

Figure 157: Modbus network with DF51

Technical features of the serial interface

Figure 158: Serial interface RS 485 (RJ 45 plug)

- ► Open the black protective cap 1.
- ▶ Plug the communications cable into the free RJ 45 socket ②.

→ Open the protective cap, but do not remove it.

The DF51 is connected through its RJ 45 socket which is located behind the keypad's black protective cap.

```
→ No tools are required to fit and remove the optional keypads, LED displays and plug-in adapters.
```

Attention!

Fit and remove the keypad, LED display or plug-in adapter only under no volt conditions and without using force.

Table 35: PIN allocation, RJ 45 (RS 485)

\rightarrow	Do not connect terminals 1 to 4, 7 and 8. They are used by the DF51 system for internal data transfer.
\rightarrow	The network cable must have a bus termination resistor (120 ohm) connected at each physical end to prevent reflections and the resulting transmission faults.
	The DF51 frequency inverter has no internal bus termination resistor. When a DF51 is connected at the end of a bus conductor, the bus termination must be

of a bus conductor, the bus termination must be connected externally (pin 5 and 6). Keep in mind the network conductor's impedance.

	Pin	Designation	Description
	1	_	Not connected
1	2	-	Not connected
	3	-	Not connected
	4	-	Not connected
5	5	SP	Send/receive, positive data channel
	6	SN	Send/receive, negative data channel
`8	7	-	Not connected
	8	-	Not connected

Designation	Specification	User adjustable
Baud rate (data transfer speed)	4800/9600/19200 bit/s	Yes
Communication mode	Asynchronous	No
Character code	Binary	No
LSB positioning	LSB first transmission	No
Data bits	8 bit (Modbus RTU mode)	(ASCII mode not possible)
Parity	None/even/uneven	Yes
Stop bits	1 or 2 bits	Yes
Data traffic	Starting the control (host, master)	No
Communications fault (waiting time to fault indication)	0 to 1000 ms	Yes
Address	Addressing from 1 to 32	Yes
Interface	RS 485, differential transmission	No
Connection	RJ 45 socket	-
Twisted pair cable	Twisted, double screened cable	-
Fault monitoring	Overflow, test code, CRC-16, horizontal parity	-

 Table 36:
 Physical specifications of the serial interface

Setting the OPE/485 DIP switch

By default, the DF51 frequency inverters' RS 485 interface is set for operation with a keypad (DEX-KEY-...). In this control mode, you can set parameters PNU C071 to C078 for bus operation using a keypad (OPE) or a PC. To save these changes, press the ENTER key on the keypad or use the Save command of the DrivesSoft software.

- To set up the interface for communications through Modbus, switch off the power supply.
- ► Set the microswitch OPE/485 to position 485.

With this setting, Modbus communications begin when the DF51 frequency inverter's power supply is switched on (POWER LED is lit). The changed parameter values apply immediately.

Figure 159: Microswitch OPE/485

Parameter settings for Modbus

Prerequisites for correct operation with Modbus-RTU are:

- The PLC (master) is fitted with a serial interface RS 485 and with the required driver software for Modbus-RTU.
- The parameters of the DF51 frequency inverters (slaves) are set for communication via Modbus. For reliable setting of some user-defined parameters, you will need the master's (i.e. the host PC's) settings, such as the baud rate.
- → Parameters PNU C071 to C078 can not be altered through the bus. They must be initially set using a keypad (DEX-KEY-...) or a PC.
- → The values in the "Required settings" column (such as baud rate, bus address and parity) must be taken into account for communications through Modbus.

PNU	Run	b031 = 10	Meaning	Value	range	DS	Page	Required settings
A001	-	-	Reference value source	00:	Potentiometer (keypad)	01	81	03
			selection	01:	Analog input: control signal terminals O and OI	-		
				02:	Functions PNU F001 or A020			
				03:	Serial interface (Modbus)	-		
				10:	Calculator (calculated value of CAL)	-		
A002)2 – –	-	Start signal source	01:	Digital input (FWD/REV)	01	72	03
		selection		Start key (keypad)	-			
				03:	Serial interface (Modbus)	=		
b089	089 🗸 🗸	Display value with a	01:	Output frequency (d001)	01	147		
			fieldbus module (RS 485)	02:	Output current (d002)	=		
				03:	Direction of rotation (d003)	=		
				04:	Actual value (PV) (d004)	-		
				05:	State of digital inputs (d005)			
				06:	State of digital outputs (d006)			
			07:	Scaled output frequency (d007)				
C071	1 - 🗸	Communication – baud	04:	4800 bit/s	06	146	Dependent on the setting of	
			rate	05:	9600 bit/s			the PLC (master) setting
				06:	19200 bit/s	-		
C072	-	\checkmark	Communication – address	132		1	146	Individual address in network. Each address must be unique.
C074	-	\checkmark	Communication – parity	00:	None	00) 146	Dependent on the PLC
				01:	Even			(master)
				02:	Odd	-		
C075	_	\checkmark	Communication – stop	1:	1 bit	1	146	Dependent on the PLC (host,
			bits	2:	2 bits	-		master)

Table 37: Required parameter settings

PNU	Run	b031 = 10	Meaning	Value	range	DS	Page	Required settings
C076	-	\checkmark	Communication –	00:	Switch off on fault signal E60	02	147	Individual
			behaviour of frequency inverter on communication errors	01:	Decelerate to standstill at deceleration ramp and then switch off with error E60.			
				02:	No fault signal			
			03:	FRS: Free run stop (free coasting, = controller inhibit)				
				04	04 DEC: Braking to 0 Hz at set deceleration ramp			
C077	_	\checkmark	Communication – set monitoring time (watchdog).	099.99 s		0.00	147	Individual
C078	-	v	Communication – waiting time (latency between request and response)	010	000 ms	0	147	Individual

Displayed value (selection with PNU b089)

When you operate the DF51 frequency inverter through the serial interface with a fieldbus module (Modbus, CANopen, PROFIBUS DP) or an external keypad (DEX-KEY-...), the built-in keypad is disabled. Only the Stop key remains enabled, but can also be disabled with parameter b087. With PNU b089 you can select a parameter to be displayed (d001 to d007) on the built-in keypad's display.

 Table 38:
 Selecting a display value in operation through the serial interface (PNU b089)

Value	Function	Description	Value range
01	d001	Output frequency	0.0400.0 Hz (0.1 Hz)
02	d002	Output current	0.0999.9 A (0.1 A)
03	d003	Direction of rotation	 F: Clockwise (forward) rotating field o: STOP r: Anticlockwise (reverse) rotating field
04	d004	PID feedback	0.0099.99 (0.01 %) 100.0999.9 (0.1 %) 10009999 (1 %)
05	d005	Status of digital inputs 1 to 5	-
06	d006	State of digital outputs 11, 12 and relay K1	-
07	d007	Scaled output frequency	0.009999 (0.01/0.1/1/10 Hz)

When operating through the serial interface, observe the following:

- DF51 shows the value of d00x as selected with PNU b089 if:
 - DIP switch OPE/485 is set to 485;
 - the frequency inverter is connected through the serial interface when the supply voltage is connected (POWER).
- During operation through the serial interface, the received fault signals (E xx,) are displayed regardless of the setting in PNU b089. You can acknowledge the fault signal with the Stop key or the Reset function (RST, → section "Resetting fault signals (RST)", page 183).
- You can disable the Stop key with PNU b087.

The network protocol

Transmission

Transmission takes place in RTU mode. The message contains no header or end characters and conforms to the following syntax:

	Slave address	Task	Data	CRC-16
--	---------------	------	------	--------

Figure 160: RTU mode

CRC-16: Block parity test character (cyclic redundancy check)

The data is transmitted in binary code. The end of the telegram is recognized by a pause in transmission of at least 3.5 characters (latency).

The data transmission between a PLC and the frequency inverter (DF51) has the following pattern:

- Request the PLC sends a protocol (Modbus) frame to the frequency inverter.
- Response after the cyclic waiting time defined by the system (plus the time in PNU C078), the frequency inverter responds with a protocol (Modbus) frame to the PLC.

Figure 161: Error checking

*t*_L: Latency (waiting time plus PNU C078)

Table 39: Specified function of the DF51:

The frequency inverter (slave) sends a response only if it 4 has previously received a request from the master.

The protocol (Modbus) frame has the following structure:

- Header (non-operative mode)
- Slave address
- Function code
- Data
- Error check
- Trailer (non-operative mode)

Structure of request Slave address:

- Here the slave address (1 to 32) of the recipient frequency inverter is entered. Only the frequency inverter with this address can respond to the request.
- Slave address 0 is used for broadcasting (sending a message to all bus stations). In this mode no single station can be addressed and slaves can not respond.

Data format:

The DF51 frequency inverters' data format corresponds to the Modbus data format:

Data name	Description
Coil (bit)	1-bit binary data, which can be allocated and changed.
Holding register (word)	16-bit binary data, which can be allocated and changed.

Function names and numbers

In this manual, the following standard English names and designations for Modbus are used.

Functio	n code	Function	Modbus standard name		Maximum number of data elements per message
dec	hex				
1	01	Read variable bit (coils)	Read multiple coil status	4	32 coils (in bits)
3	03	Read word variables (register)	Read multiple holding registers	4	4 registers (in bytes)
5	05	Write a bit variable (coil)	Force single coil	1	1 coil (in bits)
6	06	Write a word variable (register)	Force single register	1	1 register (in bytes)
8	08	Connection test	Loop back diagnostic test (00: return query data)	-	-

Functio dec	n code hex	Function	Modbus standard name	Maximum data size (available bytes per message)	Maximum number of data elements per message
15	OF	Write multiple bit variables (coils)	Force multiple coil	4	32 coils (in bits)
16	10	Write multiple word variables (register)	Force multiple registers	4	4 registers (in bytes)

Data elements: 1 byte = 8 bits

Error check

Modbus RTU uses cyclic block testing, also called CRC (cyclic redundancy checking) to check the data transfer for errors. The CRC code is a 16-bit data word consisting of 8-bit data blocks of any length. The CRC checksum is generated with generated polynomial CRC-16 (X16 + X15 + X2 + 1).

Non-operational mode (header and trailer):

The latency is the time between the request from the master and the response from the frequency inverter (slave), i.e. the time in which the changeover between transmission and reception takes place. At least 3.5 characters (24-bit rest time) of latency are always required. If the time is shorter, is the frequency inverter does not respond. The actual latency is the sum of the rest time (3.5 characters) and PNU C078 (waiting time until fault message).

Structure of response

Required transfer time

- The time between receiving a request from the master and the frequency inverter's response consists of the rest time (3.5 characters) and PNU C078 (the waiting time to the fault message).
- Once the master has received a response from the frequency inverter, it must wait for at least the rest time before it can send a new request.

Normal response

- If the master's request contains the loopback function (08_{hex}), the frequency inverter returns the same content.
- If the request contains a write register function (05_{hex}, 06_{hex}, 0F_{hex} or 10_{hex}), the frequency inverter returns the request as its response.
- If the request contains a read register function (01hex, hex or 03_{hex}), the frequency inverter returns the read data with the slave address and function code as its response.

Response in fault condition

If the request contains an error (except for a transmission error), the frequency inverter responds with an exception message and does not perform an action.

The exception message can be evaluated in the user program. It consists of the sum of the enquiry's function code and code 80_{hex} .

Structure of exception message:

- Address (slave)
- Function code
- Error code
- CRC-16

Exception code	Description
hex	
01	The function is not supported.
02	The specified address does not exist or was not found.
03	The data format is not supported or is wrong.
21	The number of the holding registers is too large or the data is outside the frequency inverter's range.
22	 The function for changing register contents can not be used during frequency inverter operation. The function sends an ENTER signal during operation. The function writes to the register during operation. The function writes to read-only register or coil.

No response

In the following cases, the frequency inverter ignores the request and does not send a reply:

- on receiving a broadcast request.
- if the request contains a transmission error.
- if the slave address in the request does not match the inverter's address.
- if the time interval between the data blocks is less than 3.5 characters.
- if the data length is invalid.

→ The master must be programmed to repeat the request if it does not receive a response within a specified time.

Explanation of function codes

Read coil status [01hex]:

This function reads the status (On/Off) of the selected coils. For example: reading input signal terminals 1 to 6 of the DF51 with slave address 8. In this example, the inputs have the following states.

Designation	Function						
Digital input	[1]	[2]	[3]	[4]	[5]	[6]	
Coil status	ON	ON	ON	OFF	ON	OFF	

Reques	Request						
No.	Name	Example					
		hex					
1	Slave address (broadcast is disabled)	08					
2	Function code	01					
3	Coil start number (High byte)	00					
4	Coil start number (Low byte)	07					
5	Number of coils (High byte) If this value is 0 or greater than 32, a fault message with code 03_{hex} is issued.	00					
6	Number of coils (Low byte). If this value is 0 or greater than 32, a fault message with code 03_{hex} is issued.	06					
7	CRC-16 (High byte)	0D					
8	CRC-16 (Low byte)	50					

Respons	Response						
No.	Name	Example					
		hex					
1	Slave address	08					
2	Function code	01					
3	Data size (in bytes)	01					
4	Coil data. Number of selected bit variables (data size)	17					
5	CRC-16 (High byte)	12					
6	CRC-16 (Low byte)	1 A					

The data range of the response contains the states of coils 7 to 14.

The status is given by 17_{hex} (00010111_bin). COIL 7 is the least significant bit (LSB).

Term	Data							
Coil number	14	13	12	11	10	9	8	7
Coil status	OFF	OFF	OFF	ON	OFF	ON	ON	ON

If a read coil lies outside the specified range, the remaining bytes to be transmitted have a zero value to indicate the out-of-range value.

If a coil can not be given as a normal value, an exception message (\rightarrow section "Exception signal (error code)", page 156) is generated.

Reading the holding registers [03_{hex}]

This function reads the content of a series of consecutive holding registers with specified register addresses.

Example:

Reading three set parameters of a DF51 frequency inverter with slave address 5 and the following content:

DF51 command	d001 (N)	d002 (N-1)	d003 (N-2)
Register number	1002 _{hex}	1003 _{hex}	1003 _{hex}
Messages	Output frequency 50 Hz	Output current 0.13 A	Clockwise rotating field

Request:					
No.	Name	Exampl e			
		hex			
1	Slave address (broadcast disabled)	05			
2	Function code	03			
3	Register start number (High byte)	10			
4	Register start number (Low byte)	02			
5	Number of holding register (High byte)	00			
6	Number of holding register (Low byte)	03			
7	CRC-16 (High byte)	CRC			
8	CRC-16 (Low byte)	CRC			

Respon	Response:					
No.	Name	Exampl e				
		hex				
1	Slave address	05				
2	Function code	03				
3	Data length (in bytes) ¹⁾	06				
4	Register start number (High byte)	01				
5	Register start number (Low byte)	F4				
6	Register start number + 1 (High byte)	00				
7	Register start number +1 (Low byte)	32				
8	Register start number + 2 (High byte)	00				
9	Register start number +2 (Low byte)	01				
10	CRC-16 (High byte)	CRC				
11	CRC-16 (Low byte)	CRC				

 Number of data bytes needed for a response to the request; here 6 bytes to return the content of three holding registers.

The reply record looks as follows:

Response memory	4	5	6	7	8	9
Register number	+ 0 (High byte)	+ 0 (Low byte)	+ 1 (High byte)	+ 1 (Low byte)	+ 2 (High byte)	+ 2 (Low byte)
Register status	01 _{hex}	F4 _{hex}	00 _{hex}	32 _{hex}	00 _{hex}	01 _{hex}
Messages	Output frequency	50 Hz	Output current 0.13 A (5 % of 2.6 A)		Direction of rotati • 01 = clockwise • 02 = anticlockw	

If the read register status command cannot be run correctly, an exception message is generated (\rightarrow page 156).

Writing to coil [05_{hex}]

This function writes data to a single coil. You can change the coil's status as follows:

Data	Coil status		
	$Off \rightarrow On$	$On \rightarrow Off$	
Change data (High byte)	FF _{hex}	00 _{hex}	
Change data (Low byte)	00 _{hex}	00 _{hex}	

Request:

No.	Name	Exampl e
		hex
1	Slave address (broadcast disabled)	0A
2	Function code	05
3	Coil start number (High byte)	00
4	Coil start number (Low byte)	01
5	Change data (High byte)	FF
6	Change data (Low byte)	00
7	CRC-16 (High byte)	DC
8	CRC-16 (Low byte)	81

Writing to holding register [06hex]

This function writes data to a selected holding register.

Example:

• Reference input (PNU A020). Write 50 Hz as first fixed frequency to the frequency inverter with slave address 5.

Request:					
No.	Name	Exampl e			
		hex			
1	Slave address (broadcast disabled)	05			
2	Function code	06			
3	Register start number (High byte)	00			
4	Register start number (Low byte)	3 A			
5	Change data (High byte)	01			
6	Change data (Low byte)	F4			
7	CRC-16 (High byte)	A8			
8	CRC-16 (Low byte)	54			

Example:

This example writes the start signal for a frequency inverter with slave address 10 to coil number 1.

Precondition: PNU A002 has the value 03.

Response:

No.	Name	Exampl e
		hex
1	Slave address	0A
2	Function code	05
3	Coil start number (High byte)	00
4	Coil start number (Low byte)	01
5	Change data (High byte)	FF
6	Change data (Low byte)	00
7	CRC-16 (High byte)	DC
8	CRC-16 (Low byte)	81

• Reference frequency 50 Hz is transferred in the form of value 500 (01F4_{hex}) as reference input 0 (PNU A020) to holding register 003A_{hex}. The first value is 0.1 Hz.

If the data written to the selected coil contains errors, an exception message is issued (\rightarrow page 156).

Response:			
No.	Name	Exampl e hex	
1	Slave address	0A	
2	Function code	05	
3	Register start number (High byte)	00	
4	Register start number (Low byte)	3 A	
5	Change data (High byte)	01	
6	Change data (Low byte)	F4	
7	CRC-16 (High byte)	A8	
8	CRC-16 (Low byte)	54	

Loopback [08_{hex}]

This function tests the transfer between master and slave (response loop).

Example:

Sending any test data (request) to the frequency inverter with slave address 1 and return of this data (response) for the loopback test.

Request:				
No.	Name	Exampl e		
		hex		
1	Slave address (broadcast disabled)	01		
2	Function code	08		
3	Test control bit (High byte)	00		
4	Test control bit (Low byte)	00		
5	Data (High byte)	Any		
6	Data (Low byte)	Any		
7	CRC-16 (High byte)	CRC		
8	CRC-16 (Low byte)	CRC		

The test control bit (00_{hex} , 00_{hex}) can be used only for echoing. It is not available for other commands.

If the data written to the selected coil contains errors, an exception message is issued (\rightarrow page 156).

Response:			
No.	Name	Exampl e hex	
1	Slave address	0A	
2	Function code	05	
3	Test control bit (High byte)	00	
4	Test control bit (Low byte)	00	
5	Data (High byte)	Any	
6	Data (Low byte)	Any	
7	CRC-16 (High byte)	CRC	
8	CRC-16 (Low byte)	CRC	

Writing to coils [0F_{hex}] This function writes data to successive coils.

Example:

State change of digital inputs 1 to 5 of a frequency inverter with slave address 5. The inputs have the following state:

Designation	Data				
Digital input	1	2	3	4	5
Coil number	7	8	9	10	11
Status of digital input	ON	ON	ON	OFF	ON
Change data (binary)	1	1	1	0	1

Request:

No.	Name	Exampl e
		hex
1	Slave address (broadcast disabled)	05
2	Function code	OF
3	Coil start number (High byte)	00
4	Coil start number (Low byte)	07
5	Number of coils (High byte)	00
6	Number of coils (Low byte)	06
7	Byte number ¹⁾	02
8	Change data (High byte) ¹⁾	17
9	Change data (Low byte) ¹⁾	00
10	CRC-16 (High byte)	DA
11	CRC-16 (Low byte)	EF

1) The change data is a group of High bytes and Low bytes whose sum must be an even number. If it is odd, a 1 is added to make it even.

Response:			
No.	Name	Exampl e	
		hex	
1	Slave address	05	
2	Function code	OF	
3	Data volume in bytes	00	
4	Coil data. Number of selected bit variables (data size)	07	
5	Number of coils (High byte)	00	
6	Number of coils (Low byte)	06	
7	CRC-16 (High byte)	65	
8	CRC-16 (Low byte)	8C	

Writing to holding register [10_{hex}]

This function writes data in consecutive holding registers.

Example:

- Acceleration time 1 (PNU F002). Write 3000 s as value to the frequency inverter with slave address 1.
- A value of 3000 seconds is transferred to holding registers 0024_{hex} and 0025_{hex} in the form of the value 300000 (493E0_{hex}). The first value is 0.01 s.

Request:

No.	Name	Exampl e
		hex
1	Slave address (broadcast disabled)	01
2	Function code	10
3	Start address (High byte)	00
4	Start address (Low byte)	24
5	Number of holding registers (High byte)	00
6	Number of holding registers (Low byte)	02
7	Byte number ¹⁾	04
8	Change data 1 (High byte)	00
9	Change data 1 (Low byte)	04
10	Change data 2 (High byte)	93
11	Change data 2 (Low byte)	EO
12	CRC-16 (High byte)	DC
13	CRC-16 (Low byte)	FD

1) The number of changing data bytes is entered here, not the number of the holding register.

If the data written to the selected holding registers contains errors, an exception message is issued (\rightarrow page 156).

Response:			
No.	Name	Exampl e	
		hex	
1	Slave address	01	
2	Function code	10	
3	Start address (High byte)	00	
4	Start address (Low byte)	24	
5	Number of holding registers (High byte)	00	
6	Number of holding registers (Low byte)	02	
7	CRC-16 (High byte)	01	
8	CRC-16 (Low byte)	C3	

Exception signal (error code)

In the Modbus protocol only the master manages the data exchange. It addresses each slave separately and waits for a response (except in broadcasting, in which it does not wait for a reply).

If the slave does not respond within a specified time (the latency), the master declares it not present. If a transmission error occurs, the master repeats the request.

If a slave receives an incomplete message it sends an exception message to the master. The master then decides whether it resends the data or not.

The exception message contains the following fields:

- Address (slave)
- Function code
- Error code
- CRC-16

The function code of the exception message is formed by adding 80_{hex} to the request's function code.

Function code			
Request	Exception response		
hex	hex		
01	11		
03	13		
05	15		
06	16		
OF	1F		
10	90		

The error code describes the reason for the exception response:

Error code	Description
hex	
01	The function is not supported.
02	The address was not found.
03	The data format is not permissible or is incorrect.
21	The number of the holding register is too high.
22	 The register's content must not be changed while the frequency inverter is in RUN mode: The function sends an ENTER signal during operation. The function writes to the register during operation. The function writes to read-only register or coils.

Saving new register data (ENTER function)

The data transmitted to the frequency inverter with function "Force single register" or "Force multiple registers" (06_{hex} , 10_{hex}) is initially saved only in temporary memory. If the frequency inverter is switched off (POWER = Off), this data is lost. After a restart, the frequency inverter would then load the previously saved data.

With the ENTER function, the new data is saved permanently.

Sending the ENTER signal

Write the selected data to holding register 0901hex with function "Force single register" (06_{hex}).

→ The ENTER function requires a long time. You can query its status with the "Force data" coil (001A_{hex}).

The frequency inverter's memory has a limited service life (about 100000 write cycles). Frequent use of the ENTER function reduces its lifespan.

Modbus register

Coil register (bit variables)

The tables below contain the basic registers for the DF51 and DV51 frequency inverters in Modbus networks. The access rights are indicated with "ro" and "rw":

- ro = read-only value
- rw = read/write value

Coil number	Designation	Access rights	Description
hex			
0000	(reserved)	ro	
0001	Start signal	rw	0 = STOP 1 = RUN (disabled when PNU A003 = 03)
0002	Direction of rotation	rw	0 = REV 1 = FWD (disabled when PNU A003 = 03)
0003	External fault (EXT)	rw	1 = Fault signal
0004	Reset fault signal (RST)	rw	1 = Reset
0005	(reserved)	rw	-
0006	(reserved)	rw	-
0007	Digital input 1	rw	0 = OFF 1 = ON ¹)
0008	Digital input 2	rw	0 = OFF 1 = ON ¹)
0009	Digital input 3	rw	0 = OFF 1 = ON ¹)
000 A	Digital input 4	rw	0 = OFF 1 = ON ¹)
000B	Digital input 5	rw	0 = OFF 1 = ON ¹)
000C	Digital input 6 ³⁾	rw	0 = OFF 1 = ON ¹)
000D	(do not use)	ro	
000E	RUN/STOP Status	ro	0 = STOP (connected with PNU d003) 1 = RUN
0000F	FWD/REV status	ro	0 = FWD 1 = REV
0010	Frequency inverter ready	ro	0 = not ready 1 = ready
0011	(reserved)	ro	-
0012	(reserved)	ro	-
0013	(reserved)	ro	-
0014	Alarm signal	ro	0 = no fault signal 1 = fault signal
0015	PID difference signal	ro	0 = OFF 1 = ON
0016	Overload signal	ro	0 = OFF 1 = ON
0017	Frequency reached signal	ro	0 = OFF 1 = ON

Coil number	Designation	Access rights	Description
hex			
0018	Frequency reached signal at constant speed	ro	0 = OFF 1 = ON
0019	RUN mode signal	ro	0 = OFF 1 = ON
001 A	Force data	ro	0 = normal status 1= force
001B	CRC fault	ro	$0 = no fault signal^{2}$ 1 = fault signal
001C	Overflow error	ro	$0 = no fault signal^{2)}$ 1 = fault signal
001D	Bus frame fault	ro	$0 = no fault signal^{2)}$ 1 = fault signal
001E	Parity fault	ro	$0 = no fault signal^{2)}$ 1 = fault signal
001F	Checksum error signal	ro	$0 = no fault signal^{2)}$ 1 = fault signal

 The default state is On when one of the control signal terminals (digital inputs) or a coil is set to On. The control signal terminals have the highest priority. If the master can not reset the coil, it must be switched off through the control signal terminals to set the coil status to Off. 2) Transmission errors are held until they are reset. Errors can be reset during frequency inverter operation.

3) Do not use. For DV51 only.

Holding register (word variable)

$$\label{eq:MSB} \begin{split} \mathsf{MSB} &= \mathbf{M} \mathsf{ost} \; \mathbf{S} \mathsf{ignificant} \; \mathbf{B} \mathsf{yte} \\ \mathsf{LSB} &= \mathbf{L} \mathsf{east} \; \mathbf{S} \mathsf{ignificant} \; \mathbf{B} \mathsf{yte} \end{split}$$

Holding register	Function code	Designation	Access rights	Value range	Manipulated variable
hex					
2 0000 Frequency reference inp		Frequency reference input	rw	Active when PNU A001 = 03 (value range: 4000)	0 to 0.1 [Hz]
3	0000	Status of frequency inverter	ro	00: Initialization	-
				01: (Reserved)	
				02: STOP mode	
				03: RUN mode	
				04: FRS, free coasting (free run stop)	
				05: JOG, jog mode	
				06: DB, DC braking	
				07: Ready for operation	
				08: AL, fault signal	
				09: Undervoltage	
4	0000	Reserved	ro	-	-
5	0000	Actual value signal PV input	rw	Active when PNU A076 = 02 (value range: 1000)	0 to 0.1 [%]
6	Reserved		-	-	-
	_				
10	_				
11	d080	Indication – total number of occurred faults	ro	-	1 [times]
12	d081	Indication – fault 1 (last	ro	Fault signal E	-
13	d081	 fault signal) 	ro	Reserved	-
14	d081	-	ro	Frequency (Hz)	0.1 [Hz]
15	d081	-	ro	Reserved	-
16	d081	-	ro	Current (A)	0.1 [%]
17	d081	-	ro	Internal DC link voltage (V DC)	1 [V]
18	d081	-	ro	Total operating hours in RUN mode	-
19	d081	-	ro	Total operating hours in RUN mode	1 [h]
1 A	d081	-	ro	Total Power On time, power supply connec	
1B	d081	-	ro	Total Power On time, power supply connect	

Holding register	Function code	5		Value range	Manipulated variable
hex					
1C	d082	Indication – fault 2	ro	Fault signal E	-
1D	d082	-	ro	Reserved	-
1E	d082	-	ro	Frequency (Hz)	0.1 [Hz]
1F	d082	-	ro	Reserved	_
20	d082	-	ro	Current (A)	0.1 [%]
21	d082	-	ro	Internal DC link voltage (V DC)	1 [V]
22	d082	-	ro	Total operating hours in RUN mode	-
23	d082	-	ro	Total operating hours in RUN mode	1 [h]
24	d082	-	ro	Total Power On time, power supply connected (h)	_
25	d082	-	ro	Total Power On time, power supply connected (h)	1 [h]
26	d083	Indication – fault 3	ro	Fault signal E	_
27	d083	-	ro	Reserved	-
28	d083	-	ro	Frequency (Hz)	0.1 [Hz]
29	d083	-	ro	Reserved	_
2 A	d083	-	ro	Current (A)	0.1 [%]
2B	d083	-	ro	Internal DC link voltage (V DC)	1 [V]
2C	d083	-	ro	Total operating hours in RUN mode	1 [h]
2D	d083	-	ro	Total operating hours in RUN mode	-
2E	d083	-	ro	Total Power On time, power supply connected (h)	1 [h]
2F	d083	-	ro	Total Power On time, power supply connected (h)	-
30	Reserved		-	-	_
	_				
1000	-				
1001	d001	Reserved	ro	-	_
1002	d001	Output frequency display	ro	0.0400.0 Hz (0.1 Hz)	0.1 [Hz]
1003	d002	Output current display	ro	0.0999.9 A (0.1 A)	0.1 [%]
1004	d003	Direction of rotation display	ro	F: Clockwise (forward) rotating field o: STOP r: Anticlockwise (reverse) rotating field	-
1005	d004	PID feedback display (MSB)	ro	0.0099.99 (0.01 %) 100.0999.9 (0.1 %)	0.01
1006	d004	PID feedback display (LSB)	ro	- 10009999 (1 %) 0.0400.0 Hz (0.1 Hz)	
1007	d005	Indication – status of digital inputs 1 to 5	ro	-	-
1008	d006	Indication – status of digital outputs 11 and 12, and relay K1	ro	-	-
1009	d007	Indication – scaled output frequency (MSB)	ro	0.009999 (0.01/0.1/1/10 Hz)	0,01
100 A	d007	Indication – scaled output frequency (LSB)	ro		
100B	d012	Reserved	ro	-	-

Holding register	Function code	Designation	Access rights	Value	range	Manipulated variable
hex						
100C	d013	Indication – output voltage	ro	060	00 V (1 V)	1 [%]
100D	d014	Reserved	ro	-		-
100E	d016	Indication – operation time counter (MSB)	ro	10000	999 (1 h))99990 (10 h)	1 [h]
100F	_	Indication – operation time counter (LSB)		10000	00999000 (1000 h)	
1010	d017	Indication – mains On time	ro		999 (1 h)	1 [h]
1011	_)99990 (10 h))0999000 (1000 h)	
1012	_	Reserved	rw	-		-
1013		Reserved	rw	-		-
1014	F002	Acceleration time 1 (MSB)	rw	0.01.	.99.99 (0.01 s)	0.01 [s]
1015	F002	Acceleration time 1 (LSB)			999.9 (0.1 s) 3000 (1 s)	
1016	F003	Deceleration time 1 (MSB)	rw	0.01.	.99.99 (0.01 s)	0.01 [s]
1017	F003	Deceleration time 1 (LSB)	rw		999.9 (0.1 s) 3000 (1 s)	
1018	F004	Direction of rotation – function of Start key (keypad)	rw	00: Clockwise rotating field (FWD) 01: Anticlockwise rotating field (REV)		-
1019	A001	Reference value source	rw	00:	Potentiometer (keypad)	-
		selection		01:	Analog input: control signal terminals O and OI	
				02:	Functions PNU F001 or A020	
				03:	Serial interface (Modbus)	
				10:	Calculator (calculated value of CAL)	
101 A	A002	Start signal source selection	rw	01:	Digital input (FWD/REV)	-
				02:	Start key (keypad)	
				03:	Serial interface (Modbus)	
				04:	Potentiometer (optional LCD keypad DEX-KEY-6)	
101B	A003	Base frequency	rw	30 to	400 Hz, up to value of PNU A004 [Hz]	1 [Hz]
101C	A004	End frequency (fmax)	rw	304	400 Hz	1 [Hz]
101D	A005	Analog input – selection	rw	00:	Analog inputs O and/or OI	-
		(AT)		01:	Analog inputs O and OI (digital input AT is ignored)	
				02:	Analog input O or potentiometer (keypad)	
				03:	Analog input OI or potentiometer (keypad)	
101E	A006	Reserved	rw	-		-
101F	A011	Reserved	rw	-		-
1020	A011	Analog input (O-L) – frequency at minimum reference value	rw	040	00 Hz	0.1 [Hz]
1021	A012	Reserved	rw	-		-

Holding register	Function code	Designation	Access rights	Value range	Manipulated variable	
hex						
1022	A012	Analog input (O-L) — frequency at maximum reference value	rw	0400 Hz	0.1 [Hz]	
1023	A013	Analog input (O-L) – minimum reference value (offset)	rw	0100 %	1 [%]	
1024	A014	Analog input (O-L) – maximum reference value (offset)	rw	0100 %	1 [%]	
1025	A015	Analog input (O-L) – selection of starting frequency applied to the motor at minimum reference value.	rw	00: Value of PNU A011 01: 0 Hz		
1026	A016	Analog input – filter time constant	rw	117	1 [times]	
1027	A019	Reserved	rw	-	-	
1028	A020	Reserved	rw	-	-	
1029	A020	Frequency reference input – reference value through keypad, PNU A001 must equal 02.	rw	0400 Hz	0.1 [Hz]	
102 A	A021	Reserved	rw	-	-	
102B	A021	Frequency reference input – fixed frequency (1)	rw	0400 Hz	0.1 [Hz]	
102C	A022	Reserved	rw	-	-	
102D	A022	Frequency reference input – fixed frequency (2)	rw	0400 Hz	0.1 [Hz]	
102E	A023	Reserved	rw	-	-	
102F	A023	Frequency reference input – fixed frequency (3)	rw	0400 Hz	0.1 [Hz]	
1030	A024	Reserved	rw	-	-	
1031	A024	Frequency reference input – fixed frequency (4)	rw	0400 Hz	0.1 [Hz]	
1032	A025	Reserved	rw	-	-	
1033	A025	Frequency reference input – fixed frequency (5)	rw	0400 Hz	0.1 [Hz]	
1034	A026	Reserved	rw	-	-	
1035	A026	Frequency reference input – fixed frequency (6)	rw	0400 Hz	0.1 [Hz]	
1036	A027	Reserved	rw	-	-	
1037	A027	Frequency reference input – fixed frequency (7)	rw	0400 Hz	0.1 [Hz]	
1038	A028	Reserved	rw	-	-	
1039	A028	Frequency reference input – fixed frequency (8)	rw	0400 Hz	0.1 [Hz]	
103 A	A029	Reserved	rw	-	-	

Holding register	Function code	Designation	Access rights	Value range	Manipulated variable
hex					
103B	A029	Frequency reference input – fixed frequency (9)	rw	0400 Hz	0.1 [Hz]
103C	A030	Reserved	rw	-	-
103D	A030	Frequency reference input – fixed frequency (10)	rw	0400 Hz	0.1 [Hz]
103E	A031	Reserved	rw	-	-
103F	A031	Frequency reference input – fixed frequency (11)	rw	0400 Hz	0.1 [Hz]
1040	A032	Reserved	rw	-	-
1041	A032	Frequency reference input – fixed frequency (12)	rw	0400 Hz	0.1 [Hz]
1042	A033	Reserved	rw	-	-
1043	A033	Frequency reference input – fixed frequency (13)	rw	0400 Hz	0.1 [Hz]
1044	A034	Reserved	rw	-	-
1045	A034	Frequency reference input – fixed frequency (14)	rw	0400 Hz	0.1 [Hz]
1046	A035	Reserved	rw	-	-
1047	A035	Frequency reference input – fixed frequency (15)	rw	0400 Hz	0.1 [Hz]
1048	A038	Jog mode Jog mode reference value	rw	09.99 Hz	0.01 [Hz]
1049	A039	Jog mode Motor stop	rw	00: Free coasting	-
		method		01: Deceleration ramp	
				02: DC braking	
104 A	A041	Boost function: DF51 only	rw	00: Manual	00
				01: Automatic	
104B	A042	Boost, manual voltage boost	rw	020 %	0.1 [%]
104C	A043	Boost, transition frequency for maximum voltage boost	rw	050 %	0.1 [%]
104D	A044	Ulf characteristic	rw	00: Constant torque curve	-
				01: Reduced torque curve	
				02: SLV active DV51 only	
104E	A045	<i>Ulf</i> characteristic – output voltage	rw	0255	1 [%]
104F	A046	SLV – gain factor for automatic voltage compensation DV51 only	rw	0255	1 [%]
1050	A047	SLV – gain factor for automatic slip compensation DV51 only	rw	0255	1 [%]
1051	A051	DC braking	rw	00: Off: Disabled	-
				01: On: Enabled	

Holding register	Function code	Designation	Access rights	······	
hex					
1052	A052	DC braking – starting frequency	rw	060 Hz	0.1 [Hz]
1053	A053	DC braking – waiting time	rw	05 s	0.1 [s]
1054	A054	DC braking – braking torque	rw	0100 %	1 [%]
1055	A055	DC braking – braking duration	rw	060 s	0.1 [s]
1056	A056	DC braking – behaviour on activation of the digital input (DB)	rw	00: Timed braking according to value of PNU A055 01: Continuous operation	_
1057	A057	Reserved	rw	_	_
1058	A058	Reserved	rw	_	
1059	A059	Reserved	rw	_	_
105 A	A061	Maximum operating frequency	rw	0400 Hz	0.1 [Hz]
105B	A062	Minimum operating frequency	rw	0400 Hz	0.1 [Hz]
105C	A063	Reserved	rw	-	-
105D	A063	Frequency jump (1)	rw	0400 Hz	0.1
105E	A064	Frequency jump (1) – jump width	rw	010 Hz	0.1 [Hz]
105F	A065	Reserved	rw	-	-
1060	A065	Frequency jump (2)	rw	0400 Hz	0.1
1061	A066	Frequency jump (2) – jump width	rw	010 Hz	0.1 [Hz]
1062	A067	Reserved	rw	-	-
1063	A067	Frequency jump (3)	rw	0400 Hz	0.1
1064	A068	Frequency jump (3) — jump width	rw	010 Hz	0.1 [Hz]
1065	A069	Reserved	rw	-	-
1066	A069	Reserved	rw		-
1067	A070	Reserved	rw	-	-
1068	A071	PID control	rw	00: Off: Disabled	-
				01: On: Enabled	
1069	A072	PID controller – P- component	rw	0.25.0	0.1
106 A	A073	PID controller – I- component	rw	0.00100 s	0.1 [s]
106B	A074	PID controller – D- component	rw	0.00100 s	0.1 [s]
106C	A075	PID control, display factor	rw	0.0199.99	0,01
106D	A076	PID controller – actual value signal PV input	rw	00: Analog input OI (420 mA) 01: Analog input O (010 V)	_
				02: Serial interface (Modbus)	
				10: Calculated value (PNU A143)	

Holding register	Function code	Designation	Access rights	Value range		Manipulated variable
hex		PID controller – invert input signals	rw			
106E	A077			00:	Off: Disabled, reference value (+), actual value (–)	-
				01:	On: Enabled, reference value (–), actual value (+)	_
106F	A078	PID controller – output signal limit	rw	010	00 %	0.1 [%]
1070	A081	Output voltage (AVR	rw	00:	On: Enabled	-
		function)		01:	Off: Disabled	
				02:	DOFF: Disabled during deceleration	
1071	A082	Output voltage (AVR motor	rw	DF51-	32: 200, 215, 220, 230, 240	-
		rated voltage)		DF51-	340: 380, 400, 415, 440, 460, 480	-
				Defau	It setting depends on series	-
1072	A085	Reserved	rw	-		-
1073	A086	Reserved	rw	-		-
1074	A092	Acceleration time 2 (MSB)	rw	0.01	.3000 s	0.01 [s]
1075	A092	Acceleration time 2 (LSB)	rw	0.01	.3000 s	-
1076	A093	Deceleration time 2 (MSB)	rw	0.01	.3000 s	0.01 [s]
1077	A093	Deceleration time 2 (LSB)	rw	0.01	.3000 s	-
1078		rw	00:	Digital input (2CH)	_	
		signal for changeover from acceleration time 1 to acceleration time 2		01:	Frequency (PNU A095 or A096)	-
1079	A095	Reserved	rw	-		-
107 A	A095	Acceleration time, frequency for changeover from ramp time 1 to ramp time 2	rw	0.0	400 Hz	0.1 [Hz]
107B	A096	Reserved	rw	-		-
107C	A096	Deceleration time, frequency for changeover from ramp time 1 to ramp time 2	rw	0.0	400 Hz	0.1 [Hz]
107D	A097	Acceleration time,	rw	00:	Linear	-
		characteristic		01:	S curve	
107E	A098	Deceleration time,	rw	00:	Linear	-
		characteristic		01:	S curve	
107F	A101	Reserved	rw	-		-
1080	A101	Analog input (OI-L), frequency at minimum reference value	rw	0400 Hz		0.1 [Hz]
1081	A102	Reserved	rw	-		-
1082	A102	Analog input (OI-L), frequency at maximum reference value	rw	040	00 Hz	0.1 [Hz]
1083	A103	Analog input (OI-L), minimum reference value (offset)	rw	010	0 %	1 [%]

Holding register			Value range	Manipulated variable	
hex					
1084	A104	Analog input (OI-L), maximum reference value (offset)	rw	0100 %	1 [%]
1085	A105	Analog input (OI-L), selection of starting frequency applied to the motor at minimum reference value.	rw	00: Value from PNU A101 01: 0 Hz	-
1086	A111	Reserved	rw	-	-
1087	A111	Reserved	rw	-	-
1088	A112	Reserved	rw	-	-
1089	A112	Reserved	rw	-	-
108 A	A113	Reserved	rw	-	-
108B	A114	Reserved	rw	-	-
108C	A131	Reserved	rw	-	-
108D	A132	Reserved	rw	-	-
108E	A141	Calculator – select input A	rw	00: Keypad value	-
				01: Keypad potentiometer	
				02: Analog input (O)	
				03: Analog input (OI)	
				04: Serial interface (Modbus)	
108F	A142	Calculator – select input B	rw	Values -> PNU A141	-
1090	A143	Calculator – operation	rw	00: Addition (A + B)	-
				01: Subtraction (A – B)	
				02: Multiplication (A \times B)	
1091	A145	Calculator – offset frequency	rw	0400 Hz	0.1 [Hz]
1092	-	Reserved	rw	-	-
1093	A146	Calculator – offset	rw	Value from PNU A145	-
		frequency, prefix		00: Plus	
				01: Minus	
1094	A151	Reserved	rw	-	-
1095	A151	Potentiometer (keypad), starting frequency	rw	0400 Hz	0.1 [Hz]
1096	A152	Reserved	rw	-	-
1097	A152	Potentiometer (keypad), end frequency	rw	0400 Hz	0.1 [Hz]
1098	A153	Potentiometer (keypad), starting point	rw	0100 %	1 [%]
1099	A154	Potentiometer (keypad), end point	rw	0100 %	1 [%]
109 A	A155	Potentiometer (keypad),	rw	00: Value from PNU A151	-
		starting frequency source		01: 0 Hz	

Holding register	Function code	Designation	Access rights	Value range	Manipulated variable
hex					
109B	_	Reserved	rw	-	-
	_				
10A4	_				
10A5	b001	POWER, restarting mode	rw	00: Fault signal E 09, automatic restar	t at 0 Hz –
		after power supply interruption		01: Automatic restart at set starting from after expiry of time set with PNU b	
				02: After the time set with PNU b003 elapsed, the frequency inverter sync to the current motor rotation speec motor is accelerated to the reference in the set ramp times.	chronizes I and the
				03: After the time set under PNU b003 elapsed, the inverter synchronizes current motor rotation speed and t brakes to a stop in the set decelerat A fault message is then displayed.	to the he motor
10A6	b002	POWER, permissible power supply downtime	rw	0.325 s	0.1 [s]
10A7	b003	POWER, waiting time before automatic restart after power supply failure	rw	0.3100 s	0.1 [s]
10A8	b004	POWER, fault signal on	rw	00: Off: Disabled	-
		intermittent supply voltage failure or undervoltage		01: On: Enabled	
10A9	b005	POWER, number of	rw	00: 16 restarts	-
		automatic restarting attempts after intermittent supply voltage failure or undervoltage		01: No limit	
10AA	b006	Reserved	rw	-	-
10AB	b007	Reserved	rw	-	-
10AC	_	Reserved	rw	-	-
10AD	b012	Thermal overload, tripping current	rw	$0.21.2 \times I_{e}$ [A] Depending on frequency inverter's rated cur	0,01 [%] rrent (I _e)
10AE	b013	Thermal overload,	rw	00: Reduced torque 1	-
		characteristic (torque curve)		01: Constant torque	
				02: Reduced torque 2	
10AF	b015	Reserved	rw	-	-
10B0	b016	Reserved	rw	-	-
10B1	b017	Reserved	rw	-	-
10B2	b018	Reserved	rw	-	-
10B3	b019	Reserved	rw	-	-
10B4	b020	Reserved	rw	-	-
10B5	b021	Motor current limitation –	rw	00: Off: Disabled	-
		function		01: On: Enabled in acceleration phase constant speed	and at
				02: Enabled only at constant speed	

Holding register	Function code	Designation	Access rights	Value	range	Manipulated variable
hex						
10B6	b022	Motor current limitation, tripping current	rw	0.2 -	1.5 \times I_{e} for DV51 1.5 \times I_{e} for DF51 t, dependent on frequency inverters's rated t (Ie)	0.01 [A]
10B7	b023	Motor current limitation, deceleration time constant	rw	0.1	3000 s	0.1 [s]
10B8	b024	Reserved	rw	-		-
10B9	b025	Reserved	rw	-		-
10BA	b026	Reserved	rw	-		-
10BB	b028	Motor current limitation,	rw	00:	Value of PNU b022	-
		limit current selection		01:	Analog input O-L	
10BC	b031	Parameter access inhibit (access rights)	rw	00:	Access to all parameters except PNU b031 disabled when digital input SFT is enabled (→ PNU C001: 15).	-
				01:	Access to all parameters except PNU b031 and F001 (A020, A220, A021 to A035, A038) disabled when digital input SFT is enabled (\rightarrow PNU C001: 15).	
				02:	Access to all parameters blocked, except PNU b031.	
				03:	Access rights to all parameters except PNU b031 and F001 (A020, A220, A021 to A035, A038) disabled.	
				10:	Extended access rights to parameters in RUN mode.	
10BD	b032	Reserved	rw	-		1 [%]
10BE	b034	Reserved	rw	-		-
IOBF	b035	Reserved	rw	-		-
10C0	b036	Reserved	rw	-		-
10C1	b037	Reserved	rw	-		-
10C2	b040	Reserved	rw	-		-
10C3	b041	Reserved	rw	-		-
10C4	b042	Reserved	rw	-		-
10C5	b043	Reserved	rw	-		-
10C6	b044	Reserved	rw	-		-
10C7	b045	Reserved	rw	-		-
10C8	b046	Reserved	rw	-		-
10C9	b050	Reserved	rw	-		-
10CA	b051	Reserved	rw	-		-
10CB	b052	Reserved	rw	-		-
10CC	b053	Reserved	rw	-		-
10CD	b053	Reserved	rw	-		-
10CE	b054	Reserved	rw	-		-
10CF	b080	Analog output AM, gain factor	rw	025	5	1 [%]

Holding register	Function code	Designation	Access rights	Value	e range	Manipulated variable
hex						
10D0	b081	Reserved	rw	-		-
10D1	b082	Increased starting frequency (e.g. at high static friction)	rw	0.5	9.9 Hz	0.1 [%]
10D2	b083	Carrier frequency	rw	214	1 kHz	0.1 [%]
10D3	b084	Initializing – function	rw	00:	Clear fault register	-
				01:	Load default settings (DS)	
				02:	Clear fault register and load default settings (DS)	
10D4	b085	Initialization, country-	rw	00:	Japan	-
		specific default settings		01:	Europe	
				02:	USA	
10D5	b086	Frequency indication scaling factor for value in PNU d007	rw	0.1	99.9	0.1
10D6	b087	STOP key (keypad)	rw	00:	Enabled	-
				01:	Disabled	
10D7	b088	Motor restart after removal	rw	00:	Restart with 0 Hz	-
		of the FRS signal		01:	Restart with the determined output frequency (current motor speed)	
	Display value with a fieldbus	r	01:	Output frequency (d001)	-	
		module (RS 485) DF51 only		02:	Output current (d002)	
				03:	Direction of rotation (d003)	
				04:	Actual value (PV) (d004)	
				05:	State of digital inputs (d005)	
				06:	State of digital outputs (d006)	
				07:	Scaled output frequency (d007)	
0D9	b090	Braking transistor,	rw	010	00 %	-
		permissible percentage duty factor within a 100 s		0 %: I	Braking transistor disabled	
		interval DV51 only		> 0 %	: Braking transistor enabled	
10DA	b091	Behaviour after a STOP	rw	00:	DEC, braking to 0 Hz with deceleration ramp	-
		signal		01:	FRS, free run stop	
10DB	b092	Device fan, configuration	rw	00:	The built-in fan is always switched on.	-
		DV51 only		01:	The built-in fan is switched on during operation (RUN mode); automatic switch-off 5 min after Stop signal.	
				02:	Built-in fan operation is temperature- controlled.	
IODC	b095	Braking transistor, control	rw	00:	Function disabled	-
		DV51 only		01:	Enabled in RUN mode	
				02:	Always enabled	
IODD	b096	Braking transistor, starting	rw	330	.395 V (Ue = 230 V)	1 [V]
		voltage threshold DV51 only		660	.790 V (Ue = 400 V)	
		עוווט וכעט		Defau	lt, dependent on rated voltage of DV51 (Ue)	

Holding register	Function code	Designation	Access rights	Value	range	Manipulated variable
hex						
10DE	b098	Reserved	rw	-		_
10DF	b099	Reserved	rw	_		-
10E0	b100	Reserved	rw	_		-
10E1	b101	Reserved	rw	-		-
10E2	b102	Reserved	rw	-		-
10E3	b103	Reserved	rw	-		-
10E4	b104	Reserved	rw	-		-
10E5	b105	Reserved	rw	-		-
10E6	b106	Reserved	rw	-		-
10E7	b107	Reserved	rw	-		-
10E8	b108	Reserved	rw	-		-
10E9	b109	Reserved	rw	-		-
10EA	b110	Reserved	rw	_		-
10EB	b111	Reserved	rw	-		-
10EC	b112	Reserved	rw	-		-
10ED	b113	Reserved	rw	-		-
10EE	b120	Reserved	rw	_		-
10EF	b121	Reserved	rw	-		-
10F0	b122	Reserved	rw	_		-
10F1	b123	Reserved	rw	-		-
10F2	b124	Reserved	rw	-		-
10F3	b125	Reserved	rw	-		-
10F4	b126	Reserved	rw	-		-
10F5	b130	Internal DC link, stop	rw	00:	Off: Disabled	-
		deceleration ramp on overvoltage in the internal DC link		01:	On: Enabled	
10F6	b131	Deceleration ramp,	rw	330	$395 \text{ V} (U_{\text{e}} = 230 \text{ V})$	1 [V]
		switching threshold dependent on internal DC		660	790 V (<i>U</i> _e = 400 V)	
		link voltage		Defaul	t, dependent on rated voltage (U _e)	
10F7	b140	Suppress stop on	rw	00:	Off: Disabled	-
		overcurrent DV51 only		01:	On: Enabled	_
10F8	b150	Clock frequency, automatic	rw	00:	Off: Disabled	-
		clock frequency reduction on overtemperature		01:	On: Enabled	
10F9	b151	Inverter, reduce inverter's	rw	00:	OFF	
		response time (RDY) to a control signal		01:	ON	
10FA	_	Reserved	rw	-		-
	_					
1102						

Holding register	Function code	Designation Digital input 1 – function	Access rights	Value range		Manipulated variable
hex						
1103				00:	FWD: Clockwise rotating field	_
		5		01:	REV: Anticlockwise rotating field	
				02:	FF1: Fixed frequency selection, bit 0 (LSB)	
				03:	FF2: Fixed frequency selection, bit 1	
				04:	FF3: Fixed frequency selection, bit 2	
				05:	FF4: Fixed frequency selection, bit 3 (MSB)	
				06:	JOG: Jog mode	
				07:	DCB: DC braking	
				08:	SET: Select second parameter set	
				09:	2CH: Second time ramp	
				11:	FRS: Free run stop (free coasting, = controller inhibit)	
				12:	EXT: External fault message	
				13:	USP: Unattended start protection	
				15:	SFT: Parameter access inhibit	
				16:	AT: change over to analog input OI	
				18:	RST: Reset fault signal	
				19:	PTC: PTC thermistor input (digital input 5 only)	
				20:	STA: Three-wire control start signal	
				21:	STP: Three-wire control stop signal	
				22:	F/R: Three-wire control, direction of rotation	
				23:	PID: Disable PID control	
				24:	PIDC: Reset integral component of PID control	
				27:	UP: Acceleration (motor potentiometer)	
				28:	DWMN: Deceleration (motor potentiometer)	
				29:	DWN-0Hz: Motor potentiometer, reset saved value of motor potentiometer to 0 Hz	
				31:	OPE: Operator keypad	
				50:	ADD: Offset – add value from PNU A145 to frequency reference value.	
				51:	F-TM: Digital input, mode: control signal terminals preferred.	
				52:	RDY: Inverter, reduce response time to control signals	
				53:	SP-SET: Second parameter set with special functions	
				255:	(no function)	
1104	C002	Digital input 2 – function	rw	Value	5 → PNU C001	-
1105	C003	Digital input 3 – function	rw	Value	5 → PNU C001	-
1106	C004	Digital input 4 – function	rw	Value	5 → PNU C001	-
1107	C005	Digital input 5 – function	rw	Value	s → PNU C001	-

Holding register	Function code	Designation	Access rights	u		Manipulated variable
hex		Digital input 6 – function DV51 only				
1108	C006		rw	Values	a PNU C001	-
1109	C007	Reserved	rw	-		-
110 A	C008	Reserved	rw	-		-
110B	C011	Digital input 1 – logic	rw	00: 01:	High signal triggers switching. Low signal triggers switching.	-
110C	C012	Digital input 2 – logic	rw	_	→ PNU C011	_
110D	C013	Digital input 3 – logic	rw	_	s → PNU C011	_
110E	C014	Digital input 4 – logic	rw	-	5 → PNU C011	_
110F	C015	Digital input 5 – logic	rw	_	5 → PNU C011	_
1110	C016	Digital input 6 – logic DV51 only	rw		s a PNU C011	-
1111	C017	Reserved	rw	_		_
1112	C018	Reserved	rw	_		_
1113	C019	Reserved	rw	-		_
1114	C021	Digital output 11 – signal	rw	00:	RUN: In operation	-
				01:	FA1: Frequency reference value reached	
				02:	FA2: Frequency signal – output frequency exceeds value in PNU C042 (during acceleration ramp) or PNU C043 (during deceleration ramp).	
				03:	OL: Overload warning – motor current exceeds value in PNU C041.	
				04:	OD, PID control: Reference/actual value difference exceeds signalling threshold set with PNU C044.	
				05:	AL: Fault – fault/alarm signal	
				06:	Dc: Warning – reference value at input O (0 to +10 V) lower than value in PNU b082 or current signal at input OI below 4 mA.	
				07:	FBV: PID control – actual value monitoring (PV) signal on breach of limit values PNU C052/C053.	
				08:	NDc: Fault/warning dependent on PNU C077 – communication watchdog timer has expired: communications are faulty.	
				09:	LOG: Shows result of logic link performed through PNU C143.	
				10:	ODc: Fault/warning: Communication overload or interrupted (with optional DE51-NET-CAN, DE51-NET-DP).	
1115	C022	Digital output 12 – signal	rw	Values	5 → PNU C021	-
116	C023	Reserved	rw	-		-
1117	C024	Reserved	rw	-		-
1118	C025	Reserved	rw	-		-

Holding register	Function code	Designation	Access rights	Value range	Manipulated variable
hex					
1119	C026	Relay K1 – signal	rw	Values -> PNU C021	-
111 A	C027	Reserved	rw	-	_
111B	C028	Analog output AM,	rw	00: f-Out: Current output frequency	_
		measured value indication selection		01: I-Out: Current output current	_
111C	C029	Reserved	rw	-	-
111D	C031	Digital output 11 – logic	rw	00: Normally open contact (NO)	-
				01: Normally closed contact (NC)	
111E	C032	Digital output 12 – logic	rw	Values → PNU C031	-
111F	C033	Reserved	rw	-	-
1120	C034	Reserved	rw	-	-
1121	C035	Reserved	rw	-	-
1122	C036	Relay K1 (K11-K12) — logic	rw	Values -> PNU C031	-
1123	C040	Reserved	rw	-	-
1124	C041	Output function – warning threshold for overload signal (OL)	rw	$02 \times I_e$ [A] Default, dependent on frequency inverter's rated current (I_e)	0,01 [%]
1125	C042	Reserved	rw	-	-
1126	C042	Output function – signalling threshold for frequency signal FA2 during acceleration	rw	0400 Hz	0.1 [Hz]
1127	C043	Reserved	rw	-	-
1128	C043	Output function – signalling threshold for frequency signal FA2 during deceleration	rw	0400 Hz	0.1 [Hz]
1129	C044	Output function: Signalling threshold, maximum PID control deviation	rw	0100 %	0.1 [%]
112 A	C045	Reserved	rw	-	-
112B	C045	Reserved	rw	-	-
112C	C046	Reserved	rw	-	-
112D	C046	Reserved	rw	-	-
112E	C052	PID controller – switch-off threshold for second stage of PID controller	rw	0100 %	0.1 [%]
112F	C053	PID controller – switch-on threshold for second stage of PID controller	rw	0100 %	0.1 [%]
1130	C055	Reserved	rw	-	-
1131	C056	Reserved	rw	-	-
1132	C057	Reserved	rw	-	-
1133	C058	Reserved	rw	-	-
1134	C061	Reserved	rw	-	-
1135	C062	Reserved	rw	-	-

Holding register	Function code	Designation	Access rights	·····		Manipulated variable
hex						
1136	C063	Reserved	rw	-		-
1137	C070	Reserved	rw	_		-
1138	C071	Communication – baud rate	ro	04:	4800 bit/s	-
				05:	9600 bit/s	
				06:	19200 bit/s	
1139	C072	Communication – address	ro	132		-
113 A	C073	Reserved	ro	-		
113B	C074	Communication – parity	ro	00:	None	-
				01:	Even	
				02:	Odd	
113C	C075	Communication – stop bits	ro	1:	1 bit	-
				2:	2 bits	
113D	C076	Communication – behaviour of frequency inverter on communication errors	rw	00:	Switch off on fault signal E60	-
				01:	Decelerate to standstill at deceleration ramp and then switch off with error E60.	
				02:	No fault signal	
				03:	FRS: Free run stop (free coasting, = controller inhibit)	
				04:	DEC: Braking to 0 Hz at set deceleration ramp	
113E	C077	Communication – set monitoring time (watchdog).	rw	099.99 s		0.1 [s]
113F	C078	Communication – waiting time (latency between request and response)	ro	01000 ms		0.1 [s]
1140	C079	Reserved	ro	-		-
1141	C081	Analog input O – reference value signal compensation	rw	0200 %		0.1 [%]
1142	C082	Analog input OI – reference value signal compensation	rw	0200 %		0.1 [%]
1143	C083	Reserved	rw	-		-
1144	C085	Thermistor compensation (digital input 5)	rw	020	0 %	0.1 [%]
1145	C086	Analog output AM – offset compensation	rw	010	V	0.1 [%]
1146	C087	Reserved	rw	-		-
1147	C088	Reserved	rw	-		-
1148	C091	Debug mode, view	ro	00:	Do not show parameter	-
		additional parameters		01:	Show parameter	
1149	C101	Motor potentiometer – reference value for motor potentiometer after power supply interruption	rw	00:	Clear last value and use default for PNU F001	-
				01:	Use saved motor potentiometer value set with UP/DWN function through digital inputs.	

Holding register	Function code	Designation	Access rights	Value range		Manipulated variable
hex	C102	Reset function (RST) – response to a Reset signal	rw			
114 A				00:	On a rising edge the fault signal is reset and the motor is stopped.	-
				01:	On a falling edge the fault signal is reset and the motor is stopped.	
				02:	On a rising edge the fault message is reset.	
114B	C103	Reserved	rw	-		-
114C	C111	Reserved	rw	-		-
114D	C121	Reserved	rw	-		-
114E	C122	Reserved	rw	-		-
114F	C123	Reserved	rw	-		-
1150	C141	Logic function – select input	rw	00:	RUN: In operation	-
		A		01:	FA1: Frequency reference value reached	
				02:	FA2: Frequency signal – output frequency exceeds value in PNU C042 (during acceleration ramp) or PNU C043 (during deceleration ramp).	
				03:	OL: Overload warning – motor current exceeds value in PNU C041.	
				04:	OD, PID control: Reference/actual value difference exceeds signalling threshold set with PNU C044.	
				05:	AL: Fault – fault/alarm signal	
				06:	Dc: Warning – reference value at input O (0 to +10 V) lower than value in PNU b082 or current signal at input OI below 4 mA.	
				07:	FBV: PID control – actual value monitoring (PV) signal on breach of limit values PNU C052/C053.	
				08:	NDc: Fault/warning dependent on PNU C077 – communication watchdog timer has expired: communications are faulty.	
				10:	ODc: Fault/warning: Communication overload or interrupted (with optional DE51-NET-CAN, DE51-NET-DP).	
1151	C142	Logic function – select input B	rw	Values	5 → PNU C141	-
1152	C143	Logic function – select link	rw	00:	[LOG] = A AND B	-
		[LOG]		01:	[LOG] = A OR B	
				02:	[LOG] = A XOR B	
1153	C144	Digital output 11 – deceleration time (On)	rw	0100 s		0.1 [s]
1154	C145	Digital output 11 – deceleration time (Off)	rw	0100 s		0.1 [s]
1155	C146	Digital output 12 – deceleration time (On)	rw	010	00 s	0.1 [s]

Holding register	Function code	Designation	Access rights	Value range	Manipulated variable
hex					
1156	C147	Digital output 12 – deceleration time (Off)	rw	0100 s	0.1 [s]
1157	C148	Relay K1 – deceleration time (On)	rw	0100 s	0.1 [s]
1158	C149	Relay K1 – deceleration time (Off)	rw	0100 s	0.1 [s]
1159	_	Reserved	rw	-	-
	_				
1162	_				
1163	H001	Reserved	rw	-	-
1164	H002	Reserved	rw	-	-
1165	H003	Motor – assigned rating [kW]/{HP} at rated voltage (U _e)	rw	0.2; 0.4; 0.55; 0.75; 1.1; 1.5; 2.2; 3.0; 4.0; 5.5; 7.5; 11.0 {0.2; 0.4; 0.75; 1.5; 2.2; 3.7; 5.5; 7.5; 11.0} Default depends on rated voltage and type rating.	-
1166	H004	Motor – number of poles	rw	2, 4, 6, 8	-
1167	H005	Reserved	rw	-	-
1168	H006	Motor – stabilization constant	rw	0255	1 [%]
1169	H007	Motor – voltage class DV51 only	rw	200 V (230 V) 400 V Default, dependent on rated voltage and type rating.	-
116 A	H020	Reserved	rw	-	-
116B	_	Reserved	rw	-	-
116C	H021	Reserved	rw	-	-
116D	_	Reserved	rw	-	-
116E	H022	Reserved	rw	-	-
116F	_	Reserved	rw	-	-
1170	H023	Reserved	rw	-	-
1171	_	Reserved	rw	-	-
1172	H024	Reserved	rw	-	-
1173	-	Reserved	rw	-	-
1174	H030	Reserved	rw	-	-
1175	_	Reserved	rw	-	-
1176	H031	Reserved	rw	-	-
1177	-	Reserved	rw	-	-
1178	H032	Reserved	rw	-	-
1179	_	Reserved	rw	-	-
117 A	H033	Reserved	rw	-	-
117B	_	Reserved	rw	-	-
117C	H034	Reserved	rw	-	-
117D	_	Reserved	rw	-	-
117E	H050	Reserved	rw	-	-
117F	H051	Reserved	rw	-	-

Holding register			range	Manipulated variable		
hex						
1180	H052	Reserved	rw	-		-
1181	H060	Reserved	rw	-		-
1182	H070	Reserved	rw	-		-
1183	H071	Reserved	rw	-		-
1184	H072	Reserved	rw	-		-
1185	H080	Reserved	rw	-		-
1186	H081	Reserved	rw	-		-
1187	Reserved		-	-		-
	_					
1500	_					
1501	F202	Acceleration time 1 (second parameter set) (MSB)	rw	100.0	.99.99 (0.01 s) 999.9 (0.1 s)	0.01 [s]
1502	F202	Acceleration time 1 (second parameter set) (LSB)		1000.	3000 (1 s)	
1503	F203	Deceleration time 1 (second parameter set) (MSB)	rw	100.0	.99.99 (0.01 s) 999.9 (0.1 s)	0.01 [s]
1504	F203	Deceleration time 1 (second parameter set) (LSB)	rw	- 1000.	3000 (1 s)	
1505	_	Reserved	rw	-		-
	_					
1509	_					
150 A	A201	Frequency reference value	rw	00:	Potentiometer (keypad)	-
		source selection (second parameter set)		01:	Analog input: control signal terminals O and Ol	
				02:	Functions PNU F001 or A020	
				03:	Serial interface (Modbus)	
				10:	Calculator (calculated value of CAL)	
150B	A202	Start signal source selection	rw	01:	Digital input (FWD/REV)	-
		(second parameter set)		02:	Start key (keypad)	
				03:	Serial interface (Modbus)	
				04:	Potentiometer (keypad)	
150C	A203	Base frequency (second parameter set)	rw	30 to 4	400 Hz, up to value of PNU A004 [Hz]	1 [Hz]
150D	A204	End frequency (f _{max}) (second parameter set)	rw	304	00 Hz	1 [Hz]
150E	A220	Reserved	rw	-		
150F	A220	Frequency reference input – reference value through keypad, PNU A001 must equal 02 (second parameter set).	rw	040	0.1 [Hz]	
1510	A241	Boost function (second	rw	00:	Manual	00
		parameter set) DF51 only		01:	Automatic	

Holding register			Value range	Manipulated variable	
hex					
1511	A242	Boost, manual voltage boost (second parameter set)	rw	020 %	0.1 [%]
1512	A243	Boost, transition frequency for maximum voltage boost (second parameter set)	rw	050 %	0.1 [%]
1513	A244	<i>Ulf</i> characteristic (second parameter set)	rw	00: Constant torque curve 01: Reduced torque curve 02: SLV active DV51 only	
1514	A245	<i>Ulf</i> characteristic – output voltage (second parameter set)	rw	0255	1 [%]
1515	A246	SLV – gain factor for automatic voltage compensation (second parameter set) DV51 only	rw	0255	-
1516	A247	SLV – gain factor for automatic slip compensation (second parameter set) DV51 only	rw	0255	-
1517	A261	Maximum operating frequency (second parameter set)	rw	0400 Hz	0.1 [Hz]
1518	A262	Minimum operating frequency (second parameter set)	rw	0400 Hz	0.1 [Hz]
1518	A292	Acceleration time 2 (second parameter set) (MSB)	rw	0.013000 s	0.01 [s]
1519	A292	Acceleration time 2 (second parameter set) (LSB)	rw	0.013000 s	
151 A	A293	Deceleration time 2 (second parameter set) (MSB)	rw	0.013000 s	0.01 [s]
151B	A293	Deceleration time 2 (second parameter set) (LSB)	rw	0.013000 s	
151C	A294	Acceleration time, specify	rw	00: Digital input (2CH)	0.1 [Hz]
		signal for changeover from acceleration time 1 to acceleration time 2 (second parameter set)		01: Frequency (PNU A095 or A096)	
151D	A295	Reserved	rw	-	-
151E	A295	Acceleration time, frequency for changeover from ramp time 1 to ramp time 2 (second parameter set)	rw	0.0400 Hz	0.1 [Hz]
151F	A296	Reserved	rw	-	-

Holding register	Function code	Designation	Access rights	Value range	Manipulated variable
hex					
1520	A296	Deceleration time, frequency for changeover from ramp time 1 to ramp time 2 (second parameter set)	rw	0.0400 Hz	
1521	_	Reserved	rw	-	-
	_				
1525 1526	b212	Thermal overload, tripping current (second parameter	rw	0.21.2 × I_e [A] Default, dependent on frequency inverters's rated current (le)	0,01 [%]
1527	b213	 Thermal overload,	rw	00: Reduced torque 1	
	5215	characteristic (torque curve)		01: Constant torque	
		(second parameter set)		02: Reduced torque 2	
1528	b221	Motor current limitation –	rw	00: Off: Disabled	-
		function (second parameter set)		01: On: Enabled in acceleration phase and a constant speed	t
				02: Enabled only at constant speed	
1529	b222	Motor current limitation, tripping current (second parameter set)	rw	0.21.5 × I_e [A] Default, dependent on frequency inverters's rated current (le)	0,01 [%]
152 A	b223	Motor current limitation, deceleration time constant (second parameter set)	rw	0.13000 s	0.1
152B	b228	Motor current limitation,	rw	00: Value of PNU b022	-
		limit current selection (second parameter set)		01: Analog input O-L	
152C	_	Reserved	rw	-	-
	_				
1530					
1531	C201	Digital input 1 — function (second parameter set)	rw	Values \rightarrow PNU C001 (1103 _{hex})	-
1532	C202	Digital input 2 – function (second parameter set)	rw	Values → PNU C001 (1103 _{hex})	-
1533	C203	Digital input 3 – function (second parameter set)	rw	Values → PNU C001 (1103 _{hex})	-
1534	C204	Digital input 4 – function (second parameter set)	rw	Values \rightarrow PNU C001 (1103 _{hex})	-
1535	C205	Digital input 5 – function (second parameter set)	rw	Values → PNU C001 (1103 _{hex})	-
1536	C206	Digital input 6 – function (second parameter set) DV51 only	rw	Values → PNU C001 (1103 _{hex})	-
1537	C207	Reserved	rw	-	-
1538	C208	Reserved	rw	-	-

Holding register	Function code	Designation	Access rights	Value range	Manipulated variable
hex					
1539	C241	Output function — warning threshold for overload warning (OL) (second parameter set)	rw	02 × I_e [A] Default, dependent on frequency inverter's rated current (I_e)	0,01 [%]
153 A	_	Reserved	rw	-	-
	_				
153E	_				
153F	H202	Reserved	rw	-	-
1540	H203	Motor – assigned rating [kW]/{HP} at rated voltage (U _e) (second parameter set)	rw	0.2; 0.4; 0.55; 0.75; 1.1; 1.5; 2.2; 3.0; 4.0; 5.5; 7.5; 11.0 {0.2; 0.4; 0.75; 1.5; 2.2; 3.7; 5.5; 7.5; 11.0} Default depends on rated voltage and type rating.	-
1541	H204	Motor – number of poles (second parameter set)	rw	2, 4, 6, 8	-
1542	H205	Reserved	rw	-	-
1543	H206	Motor – stabilization constant (second parameter set)	rw	0255	1 [%]
1544	H207	Motor, voltage class (second parameter set) DV51 only	rw	200 V (230 V) 400 V Default, dependent on rated voltage and type rating.	-

1 Note: When a fault message is issued, the associated operational data is saved and can be read with the ENTER function.

7 Error messages

Fault signals

The DF51 frequency inverter features several built-in monitoring functions. To protect against damage, the inverter is automatically inhibited when a fault signal is detected. The connected motor then coasts to a halt and the fault signal is indicated by the red ALARM LED. The display shows an error code (E...). The DF51 remains inhibited until the fault message is acknowledged. To acknowledge the fault message:

- press the Stop key,
- activate the digital input configured as RST,
- switch off the power supply.

Display	Cause	Description
E 01	Inverter overcurrent in static operation	In the following cases, the output current is too high: • The frequency inverter's output is short-circuited.
E 02	Inverter overcurrent during deceleration	 The motor is blocked. An excessive load is suddenly applied to the output.
E 03	Inverter overcurrent during acceleration	
E 04	Inverter overcurrent at standstill	
E 05	Overload	The internal electronic motor protection has switched off the output voltage because of an overload.
E 07	Overvoltage	Overvoltage in regenerative mode.
E 08	EEPROM fault	The program memory is not operating reliably due to radio frequency interference, a control voltage short-circuit (P24–L) or excessive temperature. If the supply voltage is switched off while the RST input is active, an EEPROM fault may occur when the supply voltage is switched on again.
E 09	Undervoltage	Insufficient DC voltage (error-free electronics function not possible; potential problems such as overheating of motor and insufficient torque).
E 11	Processor malfunction	Processor is not working correctly, for example because of RFI or excessive temperature.
E 12	External fault message	An external fault signal is applied to a digital input configured as EXT input.
E 13	Unattended start protection tripped	The mains voltage was switched on or an intermittent interruption in the supply voltage has occurred while unattended start protection (input USP) was active.
E 14	Ground fault	Earth faults between the U, V or W terminals and earth are being reliably detected. A protective circuit prevents destruction of the frequency inverter at startup, but does not protect the operating personnel.
E 15	Mains overvoltage	The mains voltage exceeds the permissible value. Shutdown about 100 s after activation of power supply.
E 21	Overtemperature	The built-in temperature sensor in the power section is measuring an operating temperature above the permissible limit value.
E 22	Processor malfunction	Processor is not working correctly, for example because of RFI or excessive temperature.
E 30	Gate array fault	Internal communication error between CPU and the logical vector groups (gate array). The IGBT power module is switched off immediately.
E 35	Thermistor fault signal	The resistance of the externally fitted PTC thermistor connected to the PTC input (digital input configured as PTC input) is too high.
E60	Communication fault	Communication with the frequency inverter timed out \rightarrow PNU C076 and C077.
8888	Undervoltage (intermittent display)	The undervoltage signal appears briefly if the supply voltage (mains voltage or internal DC link voltage) is too low. The output to the motor (U, V, W) is switched off immediately.

Fault signal register

The DF51 frequency inverter possesses a fault register to which the three most recent fault messages are saved. You can retrieve these under PNU d081 to d083. PNU d081 shows the most recent fault

message, PNU d082 last but one, etc. When a new fault occurs, it is saved to PNU d081 and all older faults are moved on by one PNU (PNU d081 \rightarrow d082, PNU d082 \rightarrow d083, etc.).

Figure 162: Data in the fault register at the time of the fault signal

- (1) Total number of occurred faults
- (2) Code of the current fault signal
- 3 Frequency in Hz
- 4 Output current in A
- (5) Internal DC link voltage in V

You can clear the fault register under PNU b084 (00 or 02).

- (6) Total operating time in h in RUN mode up to the fault signal
- ⑦ POWER ON time in h, power supply switched on up to fault signal
- (8) Most recent fault signal (no fault indicated in example)
- (9) Last but one fault signal

Fault signal (AL)

A digital output configured as AL activates when a fault has occurred.

By default, function AL is assigned to signalling relay K1 (terminals K11, K12, K14) (PNU C036 = 00).

Default setting of the signalling relay

When the supply voltage is applied, the internal monitoring functions are scanned. If no fault message is present, K1 is energized (contact K11-K14 closed). When a fault message is present (E...), K1 drops out (K11-K12 closed).

Figure 163: Digital output 11 configured as AL (fault occurrence)

 Configure one of the digital outputs 11 or 12 as an AL by setting PNU C021 or PNU C022 to 05.

When the AL output is configured as a break contact, remember that there is a delay from the time the supply voltage is switched on until the AL output is closed, and a fault message relating to the AL output therefore appears for a short time after the supply is switched on.

After the frequency inverter supply voltage has been switched off, the AL output remains active until the DC bus voltage has dropped below a certain level. This time depends, among other factors, on the load applied to the inverter.

The delay from the time a fault occurs until the AL output is activated is about 300 ms.

Resetting fault signals (RST)

By default, RST is assigned to digital input 5.

A fault message can be acknowledged by activating and subsequently deactivating (i.e. resetting) the digital input configured as RST.

Figure 165: Function chart for RST (reset)

K14: Signalling relay contact K14

► Configure one of the digital inputs 1 to 5 as RST by entering the value 18 under the corresponding PNU (C001 to C005).

Warning!

If a reset is carried out after a fault, the motor will start again at once if a start signal is applied simultaneously. To avoid the risk of serious or fatal injury to personnel, you must ensure that the start signal is not present before acknowledging an error message with a reset. This prevents the risk of damage and injury.

- → When a fault has occurred, the Stop key on the keypad acts as a RESET key and can be used instead of the RST input to reset the fault.
- → If the RST input is active for more than four seconds, it can cause a false trip.
- → The RST input is always a make (NO) contact and cannot be programmed as a break (NC) contact.
- → Alternatively, you can acknowledge a fault message by briefly switching the supply voltage off and on again.

If a reset is initiated during operation, the motor coasts to a stop.

You can specify the response to the Reset signal (RST) through a digital input with PNU C102.

PNU	Designation	RUN	b031 =10s	Value	Function	DS
C102	Reset function	-	\checkmark	00	On a rising edge the fault signal is reset and the motor is stopped.	00
(RST) — response to a				01	On a falling edge the fault signal is reset and the motor is stopped.	
	Reset signal			02	On a rising edge the fault message is reset.	

Automatic restart after a fault

Warning!

When a fault has occurred, this function initiates an automatic restart of the frequency inverter if a start signal is present after the set waiting time has expired. Ensure an automatic restart does not present a danger for personnel.

With the default settings, each fault triggers a fault message. An automatic restart is possible after the following fault messages have occurred:

- Overcurrent (up to three restarting attempts, then fault signal E 01 to E 04)
- Overvoltage (up to three restarting attempts, then fault signal E 07 and E 15)
- Undervoltage, intermittent supply voltage failure (up to 16 restart attempts, then fault signal E 09)

When the maximum number of permissible automatic restarts (3 or 16) is reached, the frequency inverter must be restarted.

With PNU b002 and b003, specify the behaviour on mains failure (\rightarrow fig. 166 and fig. 167).

Figure 166: Supply voltage downtime less than value in PNU b002, automatic restart

Figure 167: Supply voltage downtime greater than value in PNU b002

- ULN: Supply voltage
- U₂: Output voltage
- n_M: Motor speed
- *t*₀: Duration of supply failure
- (1) Free run stop (coasting)

Under PNU b004, define how the DF51 frequency inverter responds to an intermittent power supply failure or undervoltage.

With PNU b005, define whether the DF51 frequency inverter attempts a restart up to 16 times or indefinitely in the event of an intermittent power supply failure or undervoltage.

If mains power returns after expiry of the time set with PNU b002 and a start signal is applied, a restart is performed.

PNU Designation		Adjustable in RUN mode		Value	Function	DS	
		Normal Extended					
b001	Restart mode	-	✓	00	The above fault messages are displayed when the associated fault occurs (restart is not activated).	00	
				01	A restart at the starting frequency after the time set under PNU b003 has elapsed.		
				02	After the time set under PNU b003 has elapsed, the inverter synchronizes to the current motor rotation speed and the motor accelerates for the set acceleration time.		
				03	After the time set under PNU b003 has elapsed, the inverter synchronizes to the current motor rotation speed and the motor brakes for the set deceleration time. A fault message is then displayed.		
b002	Permissible power failure duration	-	✓	0.3 to 1.0 s	Here, you set a time duration during which the undervoltage condition is met without the corresponding fault message in PNU E09 being initiated.	1.0	
b003	Waiting time to restart	-	✓	0.3 to 100 s	Here, set a time which is to expire before an automatic restart is initiated after a fault signal. This time can also be used in conjunction with the FRS function. During the delay, the following message appears on the LED display:	1.0	
b004	Instantaneous tripping of fault	-	✓	00	In the event of an intermittent mains failure or undervoltage, the frequency inverter does not go into a fault state.	00	
	signal	al		01	In the event of an intermittent mains failure or undervoltage, the frequency inverter goes into a fault state.		
				02	In the event of an intermittent mains failure or undervoltage at standstill and deceleration , the frequency inverter does not go into a fault state.		
b005	Number of restart	-	\checkmark	00	Sixteen restart attempts after intermittent mains failure or undervoltage.	00	
	attempts			01	The number of restart attempts is not limited.		
b006	Mains phase	_	\checkmark	00	Disabled	00	
	failure detection ¹⁾			01	Active		
b007	Synchronizatio n frequency	-	V	0 to 400 Hz	If the frequency corresponding with the motor's speed is higher than the frequency programmed here, the frequency inverter synchronizes to the motor speed and accelerates to the reference value. If the frequency corresponding with the motor's speed is lower than the frequency programmed here, the frequency inverter starts at 0 Hz.	0.00	

1) The phase failure detection doe not work when you operate the frequency inverter DF51 with RFI filter.

Troubleshooting

Fault	Condition	Possible cause	Remedy
The motor does not start.	There is no voltage present at outputs U,	Is voltage applied to terminals L, N and/or L1, L2 and L3? If yes, is the ON lamp lit?	Check terminals L1, L2, L3 and U, V, W. Switch on the supply voltage.
	V and W.	Is the LED display on the keypad displaying a fault message (E)?	Analyze the cause of the fault message (→ section "Fault signals", page 181). Acknowledge the fault message with the reset command (for example by pressing the Stop key).
		Has a start signal been issued?	Issue the start signal with the Start key or through the FWD/REV input.
		Has a reference frequency been entered under PNU F001 (for control through operator panel only)?	Enter a reference frequency under PNU F001.
		Is the reference input through the potentiometer correctly wired to terminals H, O and L?	Check that the potentiometer is connected correctly.
		Are inputs O and OI connected correctly for external reference input?	Check that the reference signal is correctly connected.
		Are the digital inputs configured as RST or FRS still active?	Deactivate RST and/or FRS. Check the signal on digital input 5 (default setting: RST).
		Has the correct source for the reference frequency (PNU A001) been set? Has the correct source for the start signal (PNU A002) been set?	Correct PNU A001 accordingly. Correct PNU A002 accordingly.
	There is voltage present at outputs U, V and W.	Is the motor blocked or is the motor load too high?	Reduce the load acting on the motor. Test the motor without load.
The motor turns in the wrong direction.	-	Are output terminals U, V and W correctly connected? Does the connection of terminals U, V and W correspond with the direction of rotation of the motor?	Connect output terminals U, V and W correctly to the motor according to the required direction of motor rotation (generally the sequence U, V, W causes clockwise operation).
		Are the control signal terminals correctly wired?	Control signal terminal FW(D) for clockwise operation and REV for anticlockwise operation.
		Has PNU F004 been correctly configured?	Set the desired direction of rotation under PNU F04.
The motor will not start.		No reference value is applied to terminal O or OI.	Check the potentiometer or the external reference value generator and replace if necessary.
		Is a fixed frequency accessed?	Observe the sequence of priority: the fixed frequencies always have priority over inputs O and OI.
		Is the motor load too high?	Reduce the motor load as the overload limit will prevent the motor reaching its normal speed if there is an overload.
The motor does not operate smoothly.	-	Are the load changes on the motor too high?	Select a frequency inverter and motor with a higher performance. Reduce the level of load changes.
		Do resonant frequencies occur on the motor?	Mask these frequencies with the frequency jumps (PNU A063 to A068) or change the pulse frequency (PNU b083).

Fault Condition		Possible cause	Remedy
The drive speed does not correspond with	_	Is the maximum frequency set correctly?	Check the set frequency range or the set voltage/ frequency characteristic.
the frequency.		Are the rated speed of the motor and the gearbox reduction ratio correctly selected?	Check the rated motor speed or the gearbox reduction ratio.
The saved parameters do not correspond to the	Entered values have not been saved.	The supply voltage was switched off before the entered values were saved by pressing the ENTER key.	Re-enter the affected parameters and save the input again.
entered values.		After the supply voltage was switched off, the entered and saved values are transferred into the internal EEPROM. The supply voltage should remain off for at least six seconds.	Enter the data again and switch off the supply voltage for at least six seconds.
	The values of the copy unit were not accepted by the frequency inverter.	After copying the parameters of the external keypad DEX-KEY-10 into the frequency inverter, the supply voltage was left on for less than six seconds.	Copy the data again and leave the supply voltage on for at least six seconds after completion.
It is not possible to make any inputs.	The motor cannot be started or stopped or reference values cannot be set.	Are PNU A001 and A002 set correctly?	Check the settings under PNU A001 and A002.
	No parameters can be set or changed.	Has software parameter protection been activated?	To allow parameter changes, disable parameter protection with PNU b031.
		Has the hardware parameter protection been activated?	Disable the digital input configured as SFT.
The electronic motor protection activates (fault message E05).	-	Is the manual voltage boost set too high? Were the correct settings made for the electronic motor protection?	Check the boost setting and the electronic motor protection setting.
RUN LED lit without Enable signal	-	No fault PNU b151 = 01: Function RDY enabled (\rightarrow page 138)	Set PNU b151 = 00.

To be observed when saving changed parameters:

After saving changed parameters with the ENTER key, no inputs can be made using the frequency inverter's keypad for at least six seconds. If, a key is pressed before this time elapses or if the reset signal is issued or the frequency inverter is switched off, the data may not be correctly saved.

04/07 AWB8230-1541GB

8 Maintenance and inspection

General

Electrocution hazard

The work described below must be performed only by electricians and other suitably trained personnel.

Open the device only when it is safely isolated from its supply and at zero volts!

After disconnecting the power supply, wait for at least 5 minutes before carrying out any maintenance, installation or repair work to allow the capacitors to discharge to harmless values.

Frequency inverters are electronic devices. Maintenance work is therefore not usually required. Local conditions and company procedures may require regular inspection.

In general we recommend the following regular checks:

ltem	Inspect for	Interval	Method	Values, remedies	Own measures
Environment	Extreme temperatures and humidity	Monthly	Thermometer, hygrometer	Ambient temperature between -10 to +40 °C, non-condensing	
Mounting location	Noise and vibration	Monthly	Visual and acoustic check	Compatibility with the environment for electrical controllers.	
Mains power supply	Voltage fluctuations	Monthly	Measure voltage between terminals L1 and N or between L1, L2 and L3	DF51-320, DF51-322: 200 to 240 V 50/60 Hz DF51-340: 380 to 460 V 50/60 Hz	
Insulation	Sufficient resistance	Annually	Measure resistance between PE and terminals	At least 5 MΩ	
Installation	Firmness of screws	Annually	Torque spanner	M3: 0.5 to 0.6 Nm M4: 0.98 to 1.3 Nm M5: 1.5 to 2 Nm	
Power section terminals	Secure connections	Annually	Visual inspection	No abnormalities	
Components (general)	Overheating	Annually	Overtemperature signal	Ambient temperature, mounting position, fan: no tripping	
Capacitors	Leakage, deformation	Monthly	Visual inspection	No abnormalities	
Resistors	Cracks, discolouration	Annually	Visual inspection	Resistance measurement	
Fan	Vibration, unusual noise, dust	Monthly	Visual inspection, function test	Remove dust, rotate by hand	
Enclosure	Dirt, dust, mechanical damage	Annually	Visual inspection	Remove dirt and dust, replace if damaged	
General	Odour, discolouration, corrosion	Annually	Visual inspection	Normal appearance, inspection of general ambient conditions for electronic devices	
Displays, LEDs	Legibility	Monthly	Visual inspection	Correct function of all LED segments	

Device fans

To ensure their proper operation, regularly remove any dust from your frequency inverters. Accumulated dust on fans and heat sink can cause the frequency inverter to overheat.

Removing the fan:

 \rightarrow

 Complete the following steps with the specified tools and without using force.

Figure 168: Removal sequence for device fan

- Insert a flat screwdriver in the middle recess and use to lever off the cover 1.
- ▶ Pull out the fan's connector ②.
- With your hand, press in the retainer on either side 3 and pull out the fan support 4. Guide the connecting cable and the plug
 through the cut-out.

Figure 169: Replacing the device fan

Replace the fan as follows:

- ► To remove the fan , release the fan from the clips in the fan support.
- ► Fit a new fan in reverse order to removal. Make sure that you fit the fan in the correct position in its support, observing its direction of rotation and airflow.
- ► When refitting the fan support ④ feed the connector ② and connecting cable back through the cut-out.
- ► Reconnect the fan and refit the cover ①, first inserting the three rear studs and then clipping in the two front studs by hand.
- ► After refitting, test the fan's function (direction of airflow, vibrations, unusual noise).

Service life of the internal DC link capacitors

The frequency inverter's internal DC link is constructed with electrolytic capacitors. These filter the rectified mains voltage and store the energy for the inverter.

Figure 170: Internal DC link capacitors

The capacitors' service life can be extended by including inductors on the mains side (line reactors, DC link reactor).

Higher ambient temperatures reduce the capacitors' service life. These must be in the permissible range.

Figure 171: Service life of the capacitors as a function of ambient temperature

① Service life of capacitors at uninterrupted duty of 12 hours per day

04/07 AWB8230-1541GB

Appendix

Special technical data

The following tables contain the technical specifications for all frequency inverters of the DF51 series complete with their assigned motor's active power. All data applies for a 4-pole three-phase asynchronous motor and the permissible ratings.

The motor's active power is the power available at the drive shaft.

DF51-322 device series

DF51-322		025	037	055	075	1K1	1K5	2K2
Assigned active power of motor in kW		0.25	0.37	0.55	0.75	1.1	1.5	2.2
Apparent power of device in kVA at	230 V	0.5	1.0	1.1	1.5	1.9	2.8	3.9
	240 V	0.5	1.0	1.2	1.6	2.0	2.9	4.1
Primary side: Number of phases		Single-ph	ase/three-ph	ase				
Primary side: Rated voltage		230 V ~ ((180 V – 0 %	to 264 V + 0) %), 47 to 63	3 Hz		
Secondary side: Rated voltage	Correspor		orimary side i	rated voltage condary volta	ge also drops.			
Primary side: Rated current in A	Single-phase	3.1	5.8	6.7	9.0	11.2	16.0	22.5
	Three-phase	1.8	3.4	3.9	5.2	6.5	9.3	13.0
Secondary side: Rated current in A		1.4	2.6	3.0	4.0	5.0	7.1	10.0
Efficiency (%) at 100 % secondary moto	r full load current	90.5	93.3	94.4	95.1	96.2	96.3	95.5
Torque during start		100 % from 6 Hz						
Braking torque								
With feedback to the capacitors Reduced braking torque at frequencie	es above 50 Hz ¹⁾							$\begin{array}{l} 20 \ \% \ \mathrm{at} f \\ \leq 60 \ \mathrm{Hz} \end{array}$
With DC braking	Braking occurs at frequencies below the minimum frequency (minimum frequency, braking time and braking torque are user-definable).						iency,	
Power loss at rated operational current I_{e} in W		19	27	28	34	42	55	98
Fan		-	-	-	-	-	\checkmark	\checkmark

1) If the regenerative braking torque is high, an external braking device with braking resistor must be used. Alternatively, you can use a DV51 with external braking resistor and – if required – optional keypad DEX-KEY-6... instead of the DF51. On the DV51 the braking device function is built in.

DF51-320 device series

DF51-320		4K0	5K5	7K5	
Assigned active power of motor in kW		4.0	5.5	7.5	
Apparent power of device in kVA at	230 V	6.3	9.5	12.7	
	240 V	7.2	9.9	13.3	
Primary side: Number of phases		Three-phase			
Primary side: Rated voltage		230 V ~ (180 V - 0 % to 26	4 V + 0 %), 47 to 63 Hz		
Secondary side: Rated voltage		Three-phase 200 to 240 V ~ Corresponding to the primary side rated voltage If the primary voltage drops, the secondary voltage also drops.			
Primary side: Rated current in A	Three-phase	20.0	30.0	40.0	
Secondary side: Rated current in A		15.9	24.0	32.0	
Torque during start		100 % from 6 Hz			
Braking torque					
With feedback to the capacitors Reduced braking torque at frequencie	s above 50 Hz ¹⁾	20 % at $f \leq 60$ Hz			
With DC braking		Braking occurs at frequencies below the minimum frequency (minimum frequency, braking time and braking torque are user-definable).			
Power loss at rated operational current . in W	Ie	98	130	150	
1) If the regenerative braking torque is external braking resistor and – if rec					

➔ The DF51-320-... are a special version for North America (US version).

DF51-340 device series

DF51-340	037	075	1K5	2K2	3K0	4K0	5K5	7K5
Assigned active power of motor in kW	0.37	0.75	1.5	2.2	3.0	4.0	5.5	7.5
Apparent power of device in kVA at 460 V	1.1	1.9	2.9	4.2	6.2	6.6	10.3	12.7
Primary side: Number of phases	Three-pl	hase						
Primary side: Rated voltage	400 V ~	(342 V - 0	% to 528 V	+ 0 %), 47	to 63 Hz			
Secondary side: Rated voltage	Corresp		460 V ~ ne primary si ge drops, the			o drops.		
Primary side: Rated current in A	2.0	3.3	5.0	7.0	10.0	11.0	16.5	20.0
Secondary side: Rated current in A	1.5	2.5	3.8	5.5	7.8	8.6	13.0	16.0
Efficiency (%) at 100 % secondary motor full load current	93.5	94	95.3	95.7	95.7	95.9	96.6	97
Torque during start	100 % f	rom 6 Hz						
Braking torque	_							
With feedback to the capacitors Reduced braking torque at frequencies above 50 Hz ¹⁾	50 % at	$f \leq 60 \text{ Hz}$		20 % a	t <i>f</i> ≦ 60 Hz			
With DC braking	-		equencies be orque are use		•	iency (minin	num frequen	ıcy, brakir
Power loss at rated operational current <i>I</i> e in W	26	42	70	95	130	150	187	227

external braking resistor and – if required – optional keypad DEX-KEY-6... instead of the DF51. On the DV51 the braking device function is built in.

Weights and dimensions

Figure 172: Dimensions and frame size, DF51

DF51-	а	a1	b	b1	b2	C	Ø	[lbin]	kg	
320-4K0	110	98	130	118	10	168	5	4.2	1.9	В
320-5K5	180	164	220	205	-	167	6	12.13	5.5	C
320-7K5	180	164	220	205	-	167	6	12.57	5.7	C
322-025	80	67	120	110	10	105	5	1.75	0.8	А
322-037	80	67	120	110	10	119	5	2.09	0.95	А
322-055	80	67	120	110	10	142	5	2.09	0.95	А
322-075	110	98	130	118	10	14 1	5	3.09	1.4	В
322-1K1	110	98	130	118	10	168	5	4.2	1.9	В
322-1K5	110	98	130	118	10	168	5	4.2	1.9	В
322-2K2	110	98	130	118	10	168	5	4.2	1.9	В
340-037	110	98	130	118	10	14 1	5	3.09	1.4	В
340-075	110	98	130	118	10	167	5	3.09	1.8	В
340-1K5 340-2K2 340-3K0 340-4K0	110	98	130	118	10	168	5	4.19	1.9	В
340-5K5	180	164	220	205	-	155	6	12.13	5.5	C
340-7K5	180	164	220	205	-	155	6	12.57	5.7	C

Optional modules

Keypad DEX-KEY-6...

The optional keypad DEX-KEY-6... is available in two versions:

- DEX-KEY-6, with reference value potentiometer;
- DEX-KEY-61, without reference value potentiometer.

These keypads provide access to all inverter parameters and therefore allow user-specific adjustment of the settings of frequency inverters DF51, DV51, DF6 and DV6.

LEDs and a four-digit digital display indicate the operating status, operational data and parameter values. With the keys, you can change the parameter values and control frequency inverter operation (Start/Stop). The frequency reference value can be adjusted with the potentiometer (DEX-KEY-6 only).

 \rightarrow

The DEX-KEY-6... keypads are not included with the frequency inverter.

Key to part numbers Key to part numbers of DEX-KEY-6... keypads:

Figure 173: Key to part numbers, keypads DEX-KEY-6...

Equipment supplied

Open the packaging with suitable tools and inspect the contents immediately after delivery to ensure that they are complete and undamaged. The package should contain the following items:

- one keypad DEX-KEY-6 or DEX-KEY-61,
- the mounting instructions AWA8240-2148,
- one RJ 45 plug-in adapter (CON-RJ45).

Figure 174: Equipment supplied, keypad DEX-KEY-6...

Layout of the DEX-KEY-6...

Figure 175: Layout of the DEX-KEY-6...

- (1) Four-digit digital display
- (2) Fixing clip (only for use when mounting in DV51)
- ③ LED status display
- (4) Reference value potentiometer (only with DEX-KEY-6)
- $(\underline{\textbf{5}})$ Keyboard for altering parameters
- 6 Keys (Start, Stop)

Fitting a keypad in the DF51

When an external keypad DEX-KEY-6... is connected, the built-in keypad is automatically disabled. Only the STOP key, the LEDs and the four-digit digital display assembly remain operational.

The keypad allows a remote parameter programming and operation of the DF51 frequency inverters.

To connect DF51 frequency inverter and keypad, use a prefabricated connection cable (DEX-CBL-or DNW-PC...).

CON-RJ45 = RJ 45 modular interconnect/communications connector

Figure 176: Connecting keypad DEX-KEY-6... with DF51

→ You do not need any tools to connect the optional keypad.

7 Attention!

Connect the keypad and the connection cable only in a voltage-free state and do not use force.

DEX-CBL-...-ICS connection cables

Figure 177: Connection cable

	l	Article number
DEX-CBL-1M0-ICS	1 m	232375
DEX-CBL-3M0-ICS	3 m	232376
DNW-PC/0050/RJ45/RJ45/5E/CSUTP/GR/PV	M 0.5	237146
DNW-PC/0100/RJ45/RJ45/5E/CSUTP/GR/PV	M 1.0	237147
DNW-PC/0300/RJ45/RJ45/5E/CSUTP/GR/PV	M 3.0	237154

Pin assignment \rightarrow page 144

Mounting frame DEX-MNT-K6

Mounting frame DEX-MNT-K6 is available for external mounting of the DEX-KEY-6... keypad (for example in the panel door). Please order the mounting frame separately.

The screws (M3 \times 7 mm, (2)) are not essential, but they do increase stability at high levels of vibration.

The fixing screws are not included as standard.

Figure 178: External keypad with mounting frame DEX-MNT-K6

Equipment supplied, mounting frame

Flush mounting the keypad in the mounting frame

Figure 180: Removing protective foil from the gasket

▶ Remove the protection foil from the gasket on the inner frame.

Figure 181: Fitting keypad DEX-KEY-6...

► Fit keypad DEX-KEY-6... in the mounting frame.

Figure 182: Removing protective foil from the outer gasket

► Remove the protection foil from the gasket on the mounting frame.

Figure 183: Joining the frames

▶ Press the mounting frame and the front frame (complete with keypad) together until the side fixings engage.

Figure 184: Self-adhesive gasket

- ► Place the supplied gasket on the front or rear of the mounting frame, depending on your application.
- Remove the second protective foil only when finally mounting the keypad.

Sie haben zwei Möglichkeiten den Montagerahmen einzubauen:

Depending on the application (control panel door or waterproof mounting), apply the supplied gasket to the mounting frame or the front frame.

Figure 185: Fitting the mounting frame

A On top of the mounting surface (panel mounting)

B Behind the mounting surface (waterproof mounting)

Mounting method A

Mounting in a panel door or on a control desk with standard-size punching tool for instruments (67 mm square hole).

Figure 186: Gasket for control panel door (reverse side, A)

Mounting method B

Mounting in a waterproof enclosure (IP54, NEMA4). Only possible with DEX-KEY-61, keypad **without** potentiometer.

Figure 187: Gasket against ingress of liquid (front, B)

Keypad DEX-KEY-10...

The optional keypad DEX-KEY-10 provides access to all inverter parameters and therefore allows user-specific adjustment of the settings of frequency inverters DF5, DF51, DV5, DV51, DF6, DV6 and RA-SP2 (System Rapid Link).

LEDs and a backlit LCD indicate the operating status, operational data and parameter values. With the keys, you can change the parameter values and control frequency inverter operation (Start/Stop).

The DEX-KEY-10... keypads are not included with the frequency inverter.

Figure 188: Keypad DEX-KEY-10

Connecting LCD keypad to DF51

→ When an external keypad DEX-KEY-10 is connected, the built-in keypad is automatically dsabled. Only the STOP key, the LEDs and the four-digit digital display assembly remain operational.

The keypad allows a remote parameter programming and operation of the DF51 frequency inverters.

To connect DF51 frequency inverter and keypad, use a prefabricated connection cable (DEX-CBL-..., → section "DEX-CBL-...-ICS connection cables", page 199).

Figure 189: Connecting keypad DEX-KEY-10... with DF51

You do not need any tools to connect the optional keypad.

7 Attention!

→

Connect the keypad and the connection cable only in a voltage-free state and do not use force.

Configuring keypad DEX-KEY--10

→ By default, keypad DEX-KEY-10 is configured for use with frequency inverters DF51, DF6, DV51 and DV6. For the DF5, DV5 and RA-SP devices and for use with several different device series, the keypad must be reconfigured.

Before you configure the keypad, make sure that it is correctly connected to the frequency inverter or speed control unit, which, in turn, is connected to its power supply. If the keypad is configured incorrectly (for example assignment of device series), the following fault message appears:

R-ERROR COMM. <1>

- Switch off the mains voltage and wait until all displays (LCD, LED) are off.
- Press and hold the RMT and PRG keys and switch on the keypad's power supply.

If the keypad is connected to a frequency inverter, the POWER LED lights up; if it is connected to a speed control unit, the UV LED lights up.

Configuration menu

The examples below illustrate each step in the keypad's configuration:

Press and hold both the RMT and the PRG key while switching on the power supply.

All LEDs light up.

LOCAL	MODE
-------	------

Release the RMT and PRG keys.

CONFIGURATION DIAGNOSE

→ The flashing cursor indicates the active function or the input value.

To move the cursor, select a function and change the values, use the arrow keys ú, í, Í and \sim .

In the Monitor menu, allowable changes of values and functions are saved directly.

In the Functions menu, changed settings are indicated with an asterisk ($\mathbf{*}$) and must be saved with the ENTER key. The ! indicates an impermissible value or function. Use the arrow keys \leq and \geq to change the setting or return without saving your changes with the PRG or MNT key.

► In the selected menu (CONFIGURATION), press the ENTER key.

BPS	
	4800

BPS (bits per second) indicates the data transfer rate. 4800 is the permissible value for the devices of the DF5, DF51, DF6, DV5, DV51, DV6 and RA-SP series. If a different transfer rate is selected, fault signal R-ERROR COMM.<2> is issued. In this case, repeat step 1 and set the permissible value 4800 again.

5		
PERATOR	TYPE	
SRW		

- ► Use arrow key i to select the assignment code and assign it with i or ∨:
 - SRW = DF51, DF6, DV51 and DV6,
 - DRW2 = DF5, DV5 and RA-SP.

OPERATOR	TYPE
	SRW
OPERATOR	TYPE

DOP/DRW and HRW are not used for the devices described in this manual.

Device series	BPS	OPERATOR TYPE
DF6, DV6	4800	SRW
DF5, DV5, RA-SP	4800	DRW2
DF51, DV51	4800	SRW

 Confirm your changes with the ENTER key and press the RMT key twice.

CONFIGURATION DIAGNOSE

For DF5, DV5 and RA-SP, the display has only a single row, and the texts are displayed in English. The POWER and RMT LEDs are lit.

Used with DF6 and DV6, the display has two rows and you can select the display language in the LANGUAGE menu (see language selection, DF6 and DV6). The POWER LED is lit.

EM	0000.00Hz
> F001	0000.00H7

Default setting

You can reload the default settings of keypad DEX-KEY-10 (not of the connected devices!) in menu CONFIGURATION. To do this, carry out the steps described in section "Configuration menu".

 \blacktriangleright With the display showing BPS (4800), press arrow key \land .

SET	DEFAULT	
CANO	EL	

▶ With arrow key ú or í select CANCEL.

• With arrow key \land or \checkmark select EXECUTE.

SET	DEFAULT
	*EXECUTE

► Confirm your input with the ENTER key.

- ▶ Press the RMT key to exit the configuration menu.
- → By default, keypad DEX-KEY-10 is configured for use with frequency inverters DF51, DF6, DV51 and DV6 (OPERATOR TYPE SRW). Used with other devices, the display shows undefined text and symbols when you press the RMT key. The operating keys have no function in that case. To use the keypad with another device type, you must reconfigure the keypad (OPERATOR TYPE).

Enabling language selection

This function is available only with devices of the DF6 and DV6 series.

With the DF5, DF51, DV5, DV51 and RA-SP devices, the display language is always English and LANGUAGE SELECT should be set OFF.

LANGUAGE	SELECT	
	ON	

Copy and Read function

- → The copy function can be used only when the drive is at standstill (in STOP state). During operation, in error condition, during resetting and with software protection enabled, this function is not available.
- → The Copy and Read function is enabled only when the keypad is configured for the connected device and the Monitor menu (RMT key) has been selected.
- → After you have pressed the READ or COPY key, wait for about 10 seconds before pressing any other key, issue a Reset command or switch the power off.

When you have switched the power supply on, you can access all parameters of the connected device through the keypad. You can change functions and parameter values both directly on the device or with the connected LCD keypad. To save the existing device parameters and/or any changed values to the keypad, press the READ key.

Read function

When you press the READ key, all parameters of the connected device are read into keypad DEX-KEY-10, where they remain in memory even with the power switched off.

The memory is an EEPROM and has a lifespan of at least 100000 read operations.

WRITER INV -> REMT

Parameter protection

To protect the parameters saved to the keypad, you can disable the READ command. To do this, press the MNT, \leq and Stop keys at the same time for about two seconds.

CONFIGURATION

With arrow keys >, \sim and \sim you can select and toggle the read function (READ LOCK = ON).

EEAD LOCK

To enable this function, press ENTER. To exit the configuration menu, press RMT.

Copy function

- → All parameter changes are written directly to the connected device. For the Copy function, you must first load the changes in the keypad with the READ function.
- → The copy function can be used only when the drive is at standstill (in STOP state). During operation, in error condition, during resetting and with software protection enabled, this function is not available.
- ▶ Press the COPY key.

All parameters saved in the keypad are transferred to the connected device.

Fault messages, the content of the fault register and the configuration for the software parameter protection are not transferred.

The keypad allows the transfer of parameters only between frequency inverters and speed control units of the same device series with the same rating.

Impermissible attempts to copy data are automatically terminated and error message R-ERROR INV.TYPE is displayed. You must acknowledge the error message with the ENTER key.

R-ERROR INV.TYPE

When you copy data between devices of the same series but with different ratings, you must adapt the ratings data (current limitation, overload protection, etc.) for each new device.

7 Attention!

Do not copy parameters between 230 V and 400 V frequency inverters of the same series (for example DF51-322... and DF51-340...).

7 Attention!

Never copy data between devices with different operating systems (for example to Japanese or American versions). The DF5, DF51, DF6, DV5, DV51, DV6 and RA-SP devices described here have a European operating system.

AWB8240-1416...

Copy and Read function example

Frequency inverter (A) with connected and configured keypad DEX-KEY-10.

The parameters of frequency inverter (A) are configured for the connected drive unit (application, series machine).

The table below describes the steps required to copy the parameters of frequency inverter (A) to three further, identical frequency inverters (B, C and D), with the same application (drive unit):

Step	Кеу	Description	Data transfer
1	READ	The parameters saved in the frequency inverter (A) are read into the keypad.	
2		Switch off the power supply of frequency inverter (A) and disconnect the LCD keypad's connection cable from the frequency inverter.	
3		Connect the keypad's connection cable to frequency inverter (B) and switch on the frequency inverter's power supply.	
41)	СОРУ	The parameters saved to the keypad are copied to frequency inverter (B). This takes about 10 seconds.	
5		Switch off the power supply of frequency inverter (B) and disconnect the LCD keypad's connection cable from the frequency inverter.	
6	СОРУ	Repeat steps 3 to 5 with frequency inverters (C) and (D).	(C, D) → (C, D) (C, D)

1) Note on step 4

READ

4b

If individual parameters are changed after you have pressed the COPY key (for example the acceleration time), you can carry out step 4a here without changing the keypad's saved data.

To also use the parameters changed in step 4a for frequency inverters (C) and (D), copy them to the keypad.

The parameters saved in the frequency inverter (B) are read into the keypad. This overwrites the parameters saved in step 1 so that the keypad now contains the parameters changed in step 4a.

CANopen interface module DE51-NET-CAN

\rightarrow	For notes about fitting see installation instructions
	AWA8240-2282.

- For a detailed description of the interface module, see manual AWB8240-1571.
- → CANopen interface module DE51-NET-CAN is not included as standard with the frequency inverter.

ns

The optional DE51-NET-CAN module allows connection of the frequency inverter to a CANopen network. DE51-NET-CAN can be mounted to the side, preferably the right side, of the DF51 with DE51xxx.

Special features:

- DIP switches for setting node ID and baud rate
- Power supplied through frequency inverter
- Isolated bus interface
- Status LEDs
- Adjustment of all frequency inverter parameters through CANopen.
- Parallel indication of reference and actual values and of all frequency inverter parameters through optional keypad DEX-KEY-6...
 - → CANopen interface module DE51-NET-CAN is mounted separately from DF51 with the mounting frame DEX-MNT-NET and connected through the connection cable DEX-CBL-...-ICS or DNW-PC...

Communication profile	DS-301 V4.01
Device profile	DS 402 V2.0
Bus addresses	1127
Data transfer rate	10 Kbit/s to 1 Mbit/s
Maximum total area coverage (depending on baud rate and repeaters)	 Up 5000 m at 10 Kbit/s Up to 25 m at 1 Mbit/s
Transmission medium	Screened, twisted pair cable
Bus termination resistor	120 Ω , suitable for separate mounting
Number of SDOs	1 server, 0 clients
Number of PDOs	4 Rx PDOs, 4 Tx PDOs
PDO mapping	Variable
Terminals	Plug-in, 5-pole terminal block

PROFIBUS-DP interface module DE51-NET-DP

\rightarrow	For notes about fitting see installation instructions	
·	AWA8240-2283.	

- → For a detailed description of the interface module, see manual AWB8240-1577 (available soon).
- → PROFIBUS-DP interface module DE51-NET-DP is not included as standard with the frequency inverter.

Figure 192: DE51-NET-DP

The optional DE51-NET-DP module allows connection of the frequency inverter to a PROFIBUS-DP network. DE51-NET-DP can be mounted to the side, preferably the right side, of the DF51 with DE51xxx.

Special features:

- DIP switches for setting node ID and baud rate
- Power supplied through frequency inverter
- Isolated bus interface
- Status LEDs
- Adjustment of all frequency inverter parameters through PROFIBUS-DP.
- Parallel indication of reference and actual values and of all frequency inverter parameters through optional keypad DEX-KEY-6...
 - → PROFIBUS-DP interface module DE51-NET-DP is mounted separately from DF51 with the mounting frame DEX-MNT-NET and connected through the connection cable DEX-CBL-...-ICS or DNW-PC...

Communication profile	EN 50170	
Device profile	Profidrive V2, Profidrive V3	
Bus addresses	199	
Data transfer rate	10 Kbit/s to 12 Mbit/s	
Maximum total area coverage (depending on baud rate and repeaters)	 1200 m at 9.6 Kbit/s 100 m at 12 Mbit/s 	
Transmission medium	Screened, twisted pair cable	

Mounting frame DEX-MNT-NET

Mounting frame for separate mounting of interface modules DE51-NET-CAN and DE51-NET-DP. The connection to the frequency inverter DF51 is made through the connection cable DEX-CBL-... or DNW-PC-...

The mounting frame DEX-MNT-NET is **not** included as standard with DF51, DE51-NET-CAN or DE51-NET-DP.

Figure 193: DEX-MNT-NET, order-no. 106265

Figure 194: Dimensions DEX-MNT-NET

Figure 195: Separate mounting with DF51

Figure 196: Connection of the interfaces DE51-NET-CAN or DE51-NET-DP with DF51

Operating software DrivesSoft2

The DrivesSoft2 operating software allows a quick configuration, operation, diagnosis and documentation of a DF or DV frequency inverter.

DrivesSoft2 is contained on the DriveCenter CD, which is supplied with each frequency inverter.

Figure 197: Configuration, operation, diagnosis and documentation of the frequency inverter with DrivesSoft

Once the frequency inverter is connected to the PC, the built-in keypad is disabled. nly the STOP button and the 4digit digital display remain active.

Warning!

Interrupting the connection between PC and frequency inverter during online operation can result in an uncontrolled operating state of the drive. Make sure that the power supply to the frequency inverter can always be switched off (for example with a mains contactor or emergency-stop circuit) and that the motor can be stopped at any time (for example with a mechanical brake).

Installation

The DrivesSoft2 installation routine can be run in English or in German. The language selected for installation has no effect on the program interface language. The default program language can be selected in a separate step during installation. The selected program language can be changed at any time with menu item Datei, Optionen.

The operating software DrivesSoft2 allows only a point-to-point connection between PC and frequency inverter. The connection is established through the optional interface converter DEX-CBL-2M0-PC. This consists of a converter (RS232/RJ45) with a 2 m long connecting cable and an RJ45 and a 9-pin Sub-D plug. If you have a PC with USB port, you can expand the interface converter DEX-CBL-2M0-PC with a commercial USB-RS232 converter. To prevent data transfer faults with the USB connection, select a converter with potential isolation.

→ Some programs permanently block the serial interface and therefore can prevent communications with the frequency inverter. These include Palm-Hot-Sync, Active Sync and the Nokia Communication Manager.

Selecting a frequency inverter

Start the program with a double-click on the "DrivesSoft2" icon.

- → To view the version of the installed DrivesSoft2 software, select menu item (Hilfe → Info). Current versions of the software are available on the Internet under ftp://ftp.moeller.net/DRIVES/SOFTWARE.
- ► In the DrivesSoft2 Unbekannt menu select Frequenzumrichter hinzu to open the device selection, → figure 198.

	oject 🝷 🔚 Save Project 📑 Add Inverter			
	Untitled Property	Value		
	Project name	Untitled		
	Version			
	Author			
	Company			
	Comment			
Legend	×			
	×			
Legend Read only User editable	×			
Read only User editable Out of range				
Read only User editable Out of range Different from De				
Read only User editable Out of range				
Read only User editable Out of range Different from De	sfault			×
Read only User editable Out of range Different from De Different Device control	Fault			
Read only User editable Out of range Different from Dr Different Device control	Device control		Trip	OTx ORx
Read only User editable Out of range Different from De Different Device control	Fault	0 Active Set: Input terminals	9 8 7 6 5 4 3 2 1	OTx Orx

Figure 198: Opening device selection: "Frequenzumrichter hinzu"

- ► Under "Frequenzumrichter hinzu…", select the COM port through which PC and frequency inverter are connected.
- ► Then click the "Erkennen" button, to start automatic recognition of the connected frequency inverter.

The Tx and Rx indicators briefly light up to indicate that the connection is being set up.

If the wrong COM port has been selected or if the selected port is being blocked by another user, issue a Reset command before starting automatic detection again.

	Moeller D¥5 DV5 Region EU	•	Detect Reset 13 Devices	COM-Port Com 1 Com 1 Com 1 Com 1 Com 1 Com 7 R
	Moeller D¥5_200¥_3ph DV5 Region US			2
Ĵ	Moeller D¥51 DV51 Region EU			
Ĵ	Moeller D¥51_200¥_3ph DV51 Region US			
	Moeller DF51			OK Cancel

Figure 199: Selection of COM port and automatic identification of connected frequency inverter.

The identified frequency inverter is displayed separately.

Moeller DFS1 DFS1 Region BJ Detected: DFS1-322-025	Detect COM-Port Com 1 ¥ Reset © Tx I Devices
	· · · · · · · · · · · · · · · · · · ·

Figure 200: Indiation of identified frequency inverter

► Confirm your selection with OK.

Specifying the control mode

With the buttons in the Gerätesteuerung – Moeller DF51 you can select the control mode PC or Frequency inverter.

🔄 New Project 🗁 Open Proje	ct 🝷 🔚 Save Project 🛛 🐻 Add Invert	ter 🔊 Open Template 🔋 Identify Inverter ŀ Monitor 🍖 Trip history 🏥 Compare 👻
🖃 🌯 Untitled	Moeller DF51	
🖻 📲 Moeller DF51	Property	Value
all parameters	Inverter name	Moeller DF51
	Class	DF51
	Region	EU
	Type designation	DF51-322-025
	VoltageClass	200: 200 V, Inverters for the voltage range 200 - 240 V,
	Rated operational power	0.25 kW
	Rated operational current	1,40A
	COM-Port	Default COM-Port
Legend	×	
Read only Read only User editable Out of range Different from Defai Different		
Read only User editable Out of range Different from Defai	ult	
Read only User editable Out of range Different from Defa Different Outrol - Moeller DF5	1 Device control	
Read only User editable Out of range Different from Defai Different	ult	
Read only User editable Out of range Different from Defa Different Outrol - Moeller DF5	1 Device control	Image: Control of the second secon

Figure 201: Selecting control mode PC or Frequency inverter

• Offline

In offline mode, the frequency inverter's parameters are not changed directly. Device control is not enabled in this case.

The parameters can be read out from the frequency inverter with Upload, edited at the PC and saved to the frequency inverter again with Download.

• Online

In online operation, the PC is connected directly with the frequency inverter. The device control is enabled.

The frequency inverter's parameters can be changed directly.

Monitoring

In monitoring mode, the frequency inverter is only monitored. Device control is not enabled in this case.

The parameters can be read out with Upload and the trend display and the fault memory can be viewed. The parameters can not be edited directly.

A prepared parameter set can be loaded to the frequency inverter with Download without establishing an online connection.

Depending on the value of PNU A001 (control signal source) and A002 (reference source) reference values and control signals can be defined. Parameters A001 and A002 themselves can not be changed.

Upload

The PC is always regarded as the higher-level device. "Upload" therefore always refers to a transfer of data from the frequency inverter to the PC.

• Download

The PC is always regarded as the higher-level device. "Download" therefore always refers to a transfer of data from the PC to the frequency inverter.

• Speichern (EEPROM)

The data transfer to the frequency inverter takes place in operating modes Online, Monitoring and Download. The data is written to volatile (non-retentive) memory, so that all transferred data is lost when the power supply is switched off. To save the data to the frequency inverter, click the Speichern (EEPROM) button. All settings for the data transfer between PC and frequency inverter must be confirmed. In the example below, the Online operating mode has been selected.

Se Entering Online	×
Online activated. Usersetings and inventer parameters are not equal. Choise option? Upload Download Cancel	

Figure 202: Parameters Upload and Download

► Select the parameter set here:

Upload: The parameters from the frequency inverter are uploaded to the PC.

Download: The parameters are written from the PC to the frequency inverter.

→ For the Upload and Download commands, the frequency inverter must be in STOP mode.

Default settings/user-defined settings

When you receive your frequency inverter, the parameters contain the default setting. On the PC interface, these parameter values are shown in the Benutzer-Einstellung column. The values that can be changed by the user have a green background; values changed by the user are indicated by a red corner.

The changes take effect only when they have been made in Online mode or after an upload.

	inication Operate	Help				
📄 New Project 😅 Open Projec			or 🗢 Open Tem	olata 🖗	Identify Investor	Monitor
			er 🥁 Open Teilij	place	Identity Inverter O	Monicor v
Untitled Moeller DF51	All parameters		User setting Default Range			
All parameters	Identifier 🔺	Name	User setting	-		Range
	A001	SetpointSource	2-REM: Optional Key			
	A002	Startcommands		: Keypad		
	A003	f-Vmax	50Hz		50Hz	3050Hz
	A004	f-max	50Hz		50Hz	30400Hz
	A005	AT-Mode	0-0 / OI: A	nalog inpu	0-0 / 0I: Analog in	03
	A011	f-minV-In	0,00Hz		0,00Hz	0,0050,00
	A012	f-maxV-In	0,00Hz		0,00Hz	0,0050,00
	A013	f-minV-InOffset	0%		0%	0100%
	A014	f-maxV-InOffset	100%		100%	0100%
	A015	f-minModeV-In	1-0 Hz: The	e motor is	1-0 Hz: The motor	01
	A016	t-FilterAnalogIn	8		8	117
	<					
	On-line Monito					
.egend į	Identifier		Asheel ashting	Urles	d Guaran Sauran Maria	
Read only	d001	Range 0,050,0Hz	Actual setting 0,0Hz	Upioad	d from inverter	
User editable						
Out of range	d002	0,002,80A	0,00A			
Different from Defau	d004	0,00100,00%	0,00%			

Figure 203: User settings and device control

Example: With reference input "A001 = 2-REM: Optional operator panel" and control signal "A002 = 2-KeyOrPC" you activate the "Gerätesteuerung" field. With the FWD, REV and Stopp & Reset buttons, you can now start and stop the frequency inverter in both directions as well as specifying the reference frequency.

→ When signal "A001 = 2-REM..." is issued, the LED over the START button lights up on the keypad of the DF51. When the FWD or REV signal is issued, the RUN LED lights up.

With the changes made here you can control the connected frequency inverter directly through the device control function on the PC.

→ To reset the parameters to their default values, select Kopieren: Standard-Einstellungen -> Benutzer-Einstellungen in the Bedienen menu. To also activate the default settings in the frequency inverter, select "Download" after resetting the parameters. The frequency inverter is then in its factory default state again.

Cables and fuses

The cross-sections of the cables and line protection fuses used must correspond with local standards.

DF51-	Power supply	ð				
		A	B		L1, L2, L3 PE (2×)	, N, U, V, W,
		VDE	UL ¹⁾	Moeller	mm ²	AWG
320-4K0	3 AC 230 V	35 A	30 A	FAZ-B32/3, PKM0-32	4.0	12
320-5K5	_	35 A	40 A	FAZ-B40/3, PKZM4-40	6.0	10
320-7K5	_	50 A	50 A	FAZ-B50/3, PKZM4-50	10	8
322-025	1 AC 230 V	10 A	10 A	FAZ-B10/1N	1.5	16
	3 AC 230 V	6 A	6 A	FAZ-B6/3, PKM0-6	1.5	16
322-037	1 AC 230 V	10 A	10 A	FAZ-B10/1N	1.5	16
	3 AC 230 V	6 A	6 A	FAZ-B6/3, PKM0-6	1.5	16
322-055	1 AC 230 V	10 A	10 A	FAZ-B10/1N	1.5	16
	3 AC 230 V	6 A	6 A	FAZ-B6/3, PKM0-6	1.5	16
322-075	1 AC 230 V	16 A	15 A	FAZ-B16/1N	2.5	14
	3 AC 230 V	10 A	10 A	FAZ-B10/3, PKM0-10	2.5	14
322-1K1	1 AC 230 V	20 A	15 A	FAZ-B16/1N	2.5	14
	3 AC 230 V	10 A	10 A	FAZ-B10/3, PKM0-10	2.5	14
322-1K5	1 AC 230 V	20 A	20 A	FAZ-B20/1N	4.0	12
	3 AC 230 V	16 A	15 A	FAZ-B16/3, PKM0-16	4.0	12
322-2K2	1 AC 230 V	30 A	30 A	FAZ-B32/1N	6.0	10
	3 AC 230 V	20 A	20 A	FAZ-B20/3, PKM0-20	6.0	10
340-037	3 AC 400 V	6 A	6 A	FAZ-B6/3, PKM0-4	1.5	16
340-075	=	6 A	6 A	FAZ-B6/3, PKM0-6,3	1.5	16
340-1K5	=	10 A	10 A	FAZ-B10/3, PKM0-10	1.5	16
340-2K2	_	10 A	10 A	FAZ-B10/3, PKM0-10	1.5	16
340-3K0	_	16 A	15 A	FAZ-B16/3, PKM0-16	2.5	14
340-4K0	-	16 A	15 A	FAZ-B16/3, PKM0-16	2.5	14
340-5K5	-	20 A	20 A	FAZ-B20/3, PKM0-20	4.0	12
340-7K5	-	25 A	25 A	FAZ-B25/3, PKM0-25	4.0	12

1) Tripping characteristic UL-rated, class J, 600 V (approved fuses and fuse holders)

For supply voltage and motor cables which exceed about 20 m in length, use cables with a larger cross-section.

Control cables should be screened and have a maximum cross-section of 0.75 $\,\rm mm^2.$

For the cable which is to be connected to the signal output, use a cable cross-section of 0.75 mm². Strip about 5 to 6 mm off the cable ends. The external diameter of the signal cable should be no more than 2 mm, except for the connection to the signalling relay.

Tightening torques and conductor cross-sections for the power terminals

Caution! Tighten th

Tighten the screws on the terminals correctly $(\rightarrow$ table 42) so that they do not come loose unintentionally.

Table 42:	Tightening torques and cable	cross-sections for the power terminals	(combination and terminal screws)
-----------	------------------------------	--	-----------------------------------

L, L1, L2, L3, N, L+, DC+, DC–, U, V, W, PE			A					•
		A)///C			0		ft-lbs ¹⁾	
	mm ²	AWG	mm	mm		Nm	TT-IDS ''	
DF51-322-025	1.5	16	68	7.6	M3.5	1.3	0.96	1
DF51-322-037					M4 (PE)			
DF51-322-055								
DF51-340-037	1.5	16	810	10	M4	1.3	0.96	1
DF51-340-075								
DF51-340-1K5								
DF51-340-2K2								
DF51-322-075	2.5	14	810	10	M4	1.3	0.96	1
DF51-322-1K1								
DF51-340-3K0								
DF51-340-4K0								
DF51-320-4K0	4	12	1214	13	M5	2.4	1.78	2
DF51-322-1K5								
DF51-340-5K5								
DF51-340-7K5								
DF51-320-5K5	4	10	1214	13	M5	2.4	1.78	2
DF51-322-2K2								
DF51-320-7K5	6	8	1214	13	M5	2.4	1.78	2

1) ft-lbs (foot pounds) x 1.35 = Nm (Newton metres)

RFI filters

Figure 204: Single- and three-phase RFI filters

→ Radio interference filters DE51-LZ1 and DE51-LZ3 can be side- or footprint-mounted to the frequency inverter (→ section "Fitting a radio-interference (RFI) filter", page 32).

RFI filters have discharge currents to earth, which, in the event of a fault (phase failure, load unbalance), can be higher than the rated values. To avoid dangerous voltages, the filters must be earthed before use.

For leakage currents \geq 3.5 mA standards EN 61800-5-1 and EN 50178 specify the following:

- the protective conductor must have a cross-section f 10 mm² or
- a second protective conductor must be connected, or
- the continuity of the protective conductor must be monitored.
 - For mobile applications, a plug connector is permissible only when a second, permanently installed, earthing conductor is installed.

Figure 205: Block diagram, DE51-LZ1

DF51-	Rated mains voltage	RFI filter	Rated current	Overload current ¹⁾	Maximum leakage		contact current on terruption	Power loss of RFI filter at
	50/60 Hz				current at rated operation	PE	PE and N ²⁾ , PE and 2 phase conductors ³⁾	rated operation
			Α	A	mA	mA	mA	w
320-4K0	3 ~ 230 V + 10 %							
320-5K5					Please enquire			
320-7K5								
322-018 322-037 322-055	1 ~ 230 V + 10 %	DE51-LZ1- 007-V2	7	10.5	6	25	47	3.5
322-075 322-1K1		DE51-LZ1- 012-V2	12	18	6	26	51	4
322-1K5 322-2K2		DE51-LZ1- 024-V2	24	36	6	24	48	7.5
340-037 340-075 340-1K5 340-2K2	3 ~ 400 V + 10 %	DE51-LZ3- 007-V4	7	10.5	11	4	156	3
340-3K0 340-4K0		DE51-LZ3- 011-V4	11	16.5	35	5	198	6.5
340-5K5 340-7K5		DE51-LZ3- 020-V4	20	30	46	5.5	210	12.5
1) 150 %	for 60 s, every 30 min	2) With DE5	51-LZ1	3) With DE	51-LZ3			

Table 43: Frequency inverter assignments and technical data for DE51-LZ...

Figure 206: Block diagram, DE51-LZ3

 Table 44:
 Performance features of DE51-LZ...

Ambient temperature	Up to +40 °C
Climatic proofing	IEC 25/085/21
Terminal capacity	0.24 mm ²

Weights and dimensions

Figure 207: Dimensions

Part no.	а	a1	b	b1	b2	b3	с	c1	c2	d	d1		l
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	mm
DE51-LZ1-007-V2	80	67	170	160	110	120	27	20	13.5	5	2 × 6	0.45	160
DE51-LZ1-012-V2	110	98	180	170	118	130	35	28	17.5	5	4 × 6	0.5	180
DE51-LZ1-024-V2	110	98	180	170	118	130	35	28	17.5	5	4×6	0.67	180
DE51-LZ3-007-V4	110	98	180	170	118	130	35	28	17.5	5	4 × 6	0.7	180
DE51-LZ3-011-V4	11 0	98	180	170	118	13 0	35	28	17.5	5	4 × 6	0.75	180
DE51-LZ3-020-V4	180	164	285	269	205	220	40	31	20	6.3	4×6.5	1.2	250

Permissible motor cable lengths (EMC)

Frequency inverter	RFI filter	cable ler	t permissil ngth for ence class	
		C1	C2	C3
DF51-322-025 DF51-322-037 DF51-322-055	DE5-LZ1-007-V2	10 m	25 m	25 m
DF51-322-075 DF51-322-1K1	DE5-LZ1-012-V2	10 m	25 m	25 m
DF51-322-1K5 DF51-322-2K2	DE5-LZ1-024-V2	10 m	25 m	25 m
DF51-340-037 DF51-340-075 DF51-340-1K5 DF51-340-2K2	DE5-LZ3-007-V4	25 m	50 m	50 m
DF51-340-3K0 DF51-340-4K0	DE5-LZ3-011-V4	25 m	50 m	50 m
DF51-340-5K5 DF51-340-7K5	DE5-LZ3-020-V4	25 m	50 m	50 m

C1, C2: first environment (public mains network)

C3: Second environment, industrial network

RFI filters → page 218

Mains contactors

→ The mains contactors listed here assume the network's rated current (*I*_{LN}) without line reactor or mains filter. Their selection is based on the thermal current (AC-1).

Attention!

Jog mode must not be used through the mains contactor (rest period \geq 180 s between switching off and on).

For single-phase mains connection, the use of paralleling link DILM12-XP1 is recommended to ensure even loading of all contact decks.

DF51-	DF51 phase current	Mains contactor		DF51 starting current (RC
		Conventional thermal current	Part no.	load current at maximum input voltage)
		$I_{\text{th}} = I_{\text{e}} \text{ AC-1} \text{ at 60 \%, open}$		
	I _{LN} [A]	I _{th} AC-1 [A]		I ₀ [A]
Connection 1	~ 230 V (240 V ± 10 %)			
322-025	3.5	20	DILM7	31.9
322-037	5.8	-		
322-055	6.7	-		
322-075	9	-		
322-1K1	11.2	-		
322-1K5	17.2	-		
322-2K2	24	-	DILM7 + DILM12-XP1 ¹⁾	
1) For single-	phase line connection of the D	F51-322-2K2, all three contacts must be co	onnected through paralleling link	DILM12-SP1.
Connection 3	8 ~ 230 V (240 V ± 10 %)			
320-4K0	22	35	DILM17	31.9
320-5K5	30	35	DILM17	
320-7K5	40	40	DILM25	16
322-025	2	20	DILM7	31.9
322-037	3.4			
322-055	3.9	-		
322-075	5.2	-		
322-1K1	6.5	-		
322-1K5	10	-		
322-2K2	14	-		
3 ~ 400 V co	nnection			
340-037	2	20	DILM7	63.7
340-075	3.3	-		
340-1K5	5	-		
340-2K2	7			
340-3K0	10			
340-4K0	11			
340-5K5	16.5			
340-7K5	20	35	DILM17	31.9

Line reactor

- → When the frequency inverter is operating at its rated current limit, the line reactor causes a reduction of the frequency inverter's greatest possible output voltage (U_2) to about 96 % of the mains voltage (U_{LN}) .
- → Line reactors reduce the magnitude of the current harmonics up to about 30 % and increase the lifespan of frequency inverters and upstream-connected switching devices.

Figure 209: Line reactors DEX-LN...

DF51-	Mains voltage	Maximum input voltage VAC _{rms}	Mains current (I _{LN}) of the DF51 without line reactor	Assigned line reactor
320-4K0	3 ~ 230 V	240 V + 10 %	22	DEX-LN3-025
320-5K5	_		30	DEX-LN3-040
320-7K5	_		40	DEX-LN3-040
322-025	1 ~ 230 V	240 V + 10 %	3.5	DEX-LN1-006
322-037	_		5.8	DEX-LN1-006
322-055	_		6.7	DEX-LN1-009
322-075	_		9	DEX-LN1-009
322-1K1	_		11.2	DEX-LN1-013
322-1K5	_		17.5	DEX-LN1-018
322-2K2	_		24	DEX-LN1-024
322-025	3 ~ 230 V	240 V + 10 %	2	DEX-LN3-004
322-037	_		3.4	
322-055	_		3.9	
322-075	_		5.2	DEX-LN3-006
322-1K1	_		6.5	DEX-LN3-006
322-1K5	_		10	DEX-LN3-010
322-2K2	_		14	DEX-LN3-016
340-037	3 ~ 400 V	480 V + 10 %	2	DEX-LN3-004
340-075	_		3.3	DEX-LN3-004
340-1K5	_		5	DEX-LN3-006
340-2K2	_		7	DEX-LN3-010
340-3K0	_		10	
340-4K0	_		11	
340-5K5	_		16.5	DEX-LN3-016
340-7K5	_		20	DEX-LN3-025

→ For technical data for the DEX-LN series line reactors, see installation instructions AWA8240-1711.

Motor reactor

Figure 210: Motor reactors DEX-LM...

DF51-	Maximum output voltage	Rated operational current (motor current) I _e [A]	Assigned motor reactor
320-4K0	3 ~ 240 V +	17.5	DEX-LM3-035
320-5K5	10 %	24	
320-7K5		32	
322-025		1.6	DEX-LM3-005
322-037		2.6	
322-055		3	
322-075		4	
322-1K1		5	
322-1K5		8	DEX-LM3-008
322-2K2		11	DEX-LM3-011
340-037	3 ~ 480	1.5	DEX-LM3-005
340-075	V + 10 %	2.5	
340-1K5		3.5	
340-2K2		5.5	DEX-LM3-008
340-3K0		7.8	
340-4K0		8.6	DEX-LM3-011
340-5K5		13	DEX-LM3-016
340-7K5		16	

For technical data for the DEX-LM series mains reactors, see installation instructions AWA8240-1711.

⇒

Sine-wave filter

Figure 211: Sine-wave filter SFB 400/...

Block Transformatoren-Elektronik GmbH & amp; Co. KG

Postfach 1170 27261 Verden Max-Planck-Strasse 36–46 Phone: +49 (0)4231 6780 Fax: +49 (0)4231 678177

E-mail: info@block-trafo.de Internet: <u>www.block-trafo.de</u>

Figure 212: High frequency components of the output voltage

- ① Without sine-wave filter
- 2 With sine-wave filter
- f: Rotating field frequency
- n: Harmonics ordinal

Figure 213: Output voltage to motor

 U_2 : Inverter output voltage

U~: Sinusoidal voltage to be simulated

Sine-wave filter SFB filters high-frequency components above the set resonance frequency from the frequency inverter output voltage (\rightarrow figure 212). The sine-wave filter's output voltage (\rightarrow figure 213) has a sine-wave shape with a low overlaid ripple voltage. The sine-wave voltage's total harmonic distortion is typically 5 to 10 %. This significantly reduces the noise generated by the motor.

Advantages of the sine-wave filter:

- Long screened motor supply cables possible.
 - max. 200 m on supply voltages up to 480 V +10 %
 - $-\,$ max. 400 m on supply voltages up to 240 V +10 %
- Extended lifespan like that of a mains-operated motor.
- Low noise generation.

DF51-	Maximum output voltage	Rated operational current (motor current) I _e [A]	Assigned sine-wave filter
320-4K0	3 ~ 240 V + 10 %	17.5	SFB 400/16,5 ¹⁾ (SFB 400/23,5)
320-5K5		24	SFB 400/23,5
320-7K5		32	SFB 400/32
322-025		1.6	SFB 400/4
322-037		2.6	
322-055		3	
322-075		4	
322-1K1		5	SFB 400/10
322-1K5		8	
322-2K2		11	SFB 400/10 ¹⁾ (SFB 400/16,5)
340-037	3 ~ 480	1.5	SFB 400/4
340-075	V + 10 %	2.5	
340-1K5		3.5	
340-2K2		5.5	SFB 400/10
340-3K0		7.8	
340-4K0		8.6	
340-5K5		13	SFB 400/16,5
340-7K5		16	

1) At continuous 100 % motor load, use a sine-wave filter of the next higher (current) rating here.

Degree of protection	IP00, suitable for flush mounting in devices and systems
Typical voltage drop	$3 \times 30 V$
Frequency range	0 – 120 Hz
Permissible pulse frequency	3 - 8 kHz
Ambient temperature	≦ 40 °C

 \rightarrow

For more technical data for the SFB400/... series sinewave filters, see the manufacturer's instructions.

UL® Caution, Warnings and Instructions

Wiring Warnings for Electrical Practices and Wire Sizes

The Cautions, Warnings, and instructions in this section summarize the procedures necessary to ensure an inverter installation complies with Underwriters Laboratories[®] guidelines.

Warning! Use 60/75 °C Cu wire only or equivalent.

凃

Warning! Open Type Equipment.

Warning!

Suitable for use on a circuit capable of delivering not more than 5,000 rms symmetrical amperes:

- 240 V maximum for DF51-322 and DF51-320 models.
- 480 V maximum for DF51-340 models.

Warning!

"Suitable for use on a circuit capable of delivering not more than 5,000 rms symmetrical amperes, 480 V maximum." For DF51 models.

Circuit Breaker and Fuse Sizes

The inverter's connections to input power must include UL Listed inverse time circuit breakers with 600 V rating, or UL Listed fuses as shown in the table below.

Terminal Tightening Torque and Wire Size

The terminal screw dimensions for all DF51 inverters are listed in Table 42 (\rightarrow Page 217) and Table 2 (\rightarrow Page 4). This information is useful in sizing spade lug or ring lug connectors for wire terminations.

When connecting wiring, use the tightening torque listed in the above mentioned tables to safely attach wiring to the connectors.

Determination of wire and fuse sizes

The maximum motor current in your application determines the recommended wire size. The following table gives the wire size in AWG. The "Power Lines" column applies to the inverter input power, output wires to the motor, the earth ground connection, and any other component. The "Signal Lines" column applies to any wire connecting to the two green 7 and 8-position connectors just inside the front enclosure panel.

Inverter Model DF51	Input Voltago	Motor	output	Fuse (UL-rated, class J, 600 V)	Wiring Size	Torque	
DF31	Voltage	kW	HP	(OL-rated, class J, 600 V)	Range AWG	ft-lbs	Nm
322-025	200 V	0.2	1/4	10	16	0.6	0.8
322-037		0.4	1/2	10	16	0.6	0.8
322-055		0.55	3⁄4	10	16	0.6	0.8
322-075		0.75	1	15	14	0.9	1.2
322-1K1		1.1	1 ½	15	14	0.9	1.2
322-1K5		1.5	2	20 (single ph.) 15 (three ph.)	12	0.9	1.2
322-2K2		2.2	3	30 (single ph.) 20 (three ph.)	10	0.9	1.2
320-4K0		4	5	30	12	0.9	1.2
320-5K5		5.5	7 1/2	40	10	1.8	2.5
320-7K5		7.5	10	50	8	1.8	2.5
340-037	400 V	0.4	1/2	3	16	0.9	1.2
340-075		0.75	1	6	16	0.9	1.2
340-1K5		1.5	2	10	16	0.9	1.2
340-2K2		2.2	3	10	16	0.9	1.2
340-3K0		3	4	15	140	0.9	1.2
340-4K0		4	5	15	14	0.9	1.2
340-5K5		5.5	7 ½	20	12	1.8	2.5
340-7K5		7.5	10	25	12	1.8	2.5

AWG = American Wire Gauge. Smaller numbers represent increasing wire thickness.

kcmil = 1,000 circular mils, a measure of wire cross-sectional area

mm² = square millimeters, a measure of wire cross-sectional area

\rightarrow	Field wiring must be made by a UL-listed and CSA- certified closed-loop terminal connector sized for the wire gauge involved. Connector must be fixed by using the crimping tool specified by the connector manufacturer.
\rightarrow	Be sure to consider the capacity of the circuit-breaker to be used.
\rightarrow	Be sure to use larger wires for the power lines if the

Wire Connectors

Warning!

distance exceeds 20 meters.

Field wiring connections must be made by a UL Listed and CSA Certified ring lug terminal connector sized for the wire gauge being used. The connector must be fixed using the crimping tool specified by the connector manufacturer.

Motor Overload Protection

Moeller DF51 inverters provide solid state motor overload protection, which depends on the proper setting of the following parameters:

- b012 " electronic overload protection"
- b212 " electronic overload protection, 2nd motor"

Set the rated current [Amperes] of the motor(s) with the above parameters. The setting range is 0.2 * rated current to 1.2 * rated current.

Warning!

When two or more motors are connected to the inverter, they cannot be protected by the electronic overload protection. Install an external thermal relay on each motor.

04/07 AWB8230-1541GB

Parameter list

Designation Function, description Message German English 2CH Second time ramp 2-stage acceleration and deceleration ADD Add frequency offset Add Frequency (Offset) AL Fault signal Alarm signal AT Selection of the analog reference value source (AT =Analog input voltage/current select reference current 4 to 20 mA) Automatic voltage regulation Automatic Voltage Regulation AVR FF1...FF4 Binary input (fixed frequency, fixed reference value) Binary encoded (fixed frequency) DCB DC braking DC Braking DWN Deceleration (motor potentiometer) DOWN-Function (motorized speed potentiometer) EXT Input for external malfunction signals External Trip F-TM Control signal terminals mode enabled Force Terminal Mode FA1, FA2 Frequency arrival signal (set value reached or exceeded) Frequency arrival FRS Controller inhibit (the motor coasts to a stop) Free-run Stop FWD Clockwise rotating field (forward) Forward Run F/R FWD/REV (3-wire interface) Direction of rotation (3-wire) JOG Jog mode Jogging 0D PID control deviation signal Output deviation for PID control Overload signal OL Overload advance signal OPE **Operator Control** Keypad FΜ Frequency display Frequency monitor PID Activation of PID control **PID-Controller Enable** PIDC Reset I-component (PID control) Reset PID-Controller integrator PTC Thermistor, PTC thermistor Thermal Protection (Positive temperature coefficient) RDY Reduced response time Ready REV Reverse (backwards, anticlockwise rotating field) **Reverse Run** RST Reset command Reset RUN Run signal Running signal Select Set 2nd Data SET Second parameter set SFT Software protection to prevent overwrite of parameters Software Lock Function SP-SET Special functions in the second parameter set Select Special Set 2nd Data STA Start (3-wire interface) Pulse start (3-wire) STP Pulse stop (3-wire) Stop (3-wire interface) DWN-0Hz Reset frequency (motor potentiometer) Remote Control Data clearing UP UP-Function (motorized speed potentiometer) Accelerate (motor potentiometer) USP Restart inhibit Unattended start protection

Abbreviations of parameters and functions

Parameter list for user-definable settings

Parameter list for DF51 frequency inverters.

For a detailed description of the parameters, see the specified page in the manual (AWB8230-1540GB).

Frequency inverters DF51-322-... (single- and three-phase mains connection, rated voltage 230 V, 50/60 Hz) and DF51-340-... (three-phase mains connection, rated voltage 400 V, 50/60 Hz) work with the European operating system. The default settings are listed in the DS column. The DF51-320-... devices can be used only on three-phase AC mains (200/215/220/230/240 V, 50/60 Hz) and are supplied with the US version of the operating system. The default values that apply here are shown in curly brackets {xx}.

PNU = parameter number displayed on the LCD keypad.

RUN = access rights to parameters in RUN mode (RUN LED is lit).

b031 = 10 = extended access rights to parameters in RUN mode (RUN LED is lit).

- \checkmark = enabled
- - = disabled

Enter your application-specific settings in the "User setting" column in the table below.

The parameters of the second parameter set (PNU 2...) → always have the figure "2" in the first place and a grey background in the table . On keypad DEX-KEY-... they are displayed only when this function is enabled (→ PNU C001 = 08: SET).

PNU	Name	RUN	b031 = 10	Designation	Valu	e range	DS	Page	User setting
A001	SetpointSo	_	_	Reference value source	00:	Potentiometer (keypad)	01	81	
	urce			selection	01:	Analog input: control signal terminals O and OI			
					02:	Functions PNU F001 or A020			
					03:	Serial interface (Modbus)			
					10:	Calculator (calculated value of CAL)			
A201	SetpointSo urce [2]	_	-	Frequency reference value source selection (second parameter set)	Valu	es → PNU A001	01	81	
A002	Startcomm	-	-	Start signal source	01:	Digital input (FWD/REV)	01	72	· ·
	ands			selection	02:	Start key (keypad)			
					03:	Serial interface (Modbus)			
A202	StartComm ands [2]	_	-	Start signal source selection (second parameter set)	Valu	es → PNU A002	01	72	
A003	f-Vmax	-	_	Base frequency	30 to	0 400 Hz, up to value of PNU A004 [Hz]	50 {60}	68	
A203	f-Vmax [2]	_	-	Base frequency (second parameter set)	30 to	0 400 Hz, up to value of PNU A004 [Hz]	50 {60}	68	
A004	f-max	-	-	End frequency (f _{max})	30	400 Hz	50 {60}	68	
A204	f-max [2]	_	-	End frequency (f_{max}) (second parameter set)	Valu	es → PNU A004	50 {60}	68	
A005	AT-Mode	-	-	Analog input – selection (AT)		ctive AT signal (\rightarrow PNU C001 = 16) a geover takes place between:	00	87	
					00:	Analog inputs O and/or OI			
					01:	Analog inputs O and OI (digital input AT is ignored)			
					02:	Analog input O or potentiometer (keypad)			
					03:	Analog input OI or potentiometer (keypad)			

			b031 = 10	Designation	Value range	DS	Page	User setting
A011	f-minV-In	-	\checkmark	Analog input (O-L) – frequency at minimum reference value	0400 Hz	0.0	84	
A012	f-maxV-In	_	\checkmark	Analog input (O-L) – frequency at maximum reference value	0400 Hz	0.0	84	
A013	f-minV- InOffset	_	\checkmark	Analog input (O-L) – minimum reference value (offset)	0100 %	0.0	84	
A014	f-maxV- InOffset	_	\checkmark	Analog input (O-L) – maximum reference value (offset)	0100 %	100.	84	
A015	f- minModeV -In	-	√	Analog input (O-L) – selection of starting frequency applied to the motor at minimum reference value.	00: Value of PNU A011 01: 0 Hz	01	84	
A016	t- FilterAnalo gln	_	\checkmark	Analog input – filter time constant	117	8	84	
A020	f-refKeypad	✓	✓	Frequency reference input – reference value through keypad, PNU A001 must equal 02.	0400 Hz	0.0	81	
A220	f-refKeypad [2]	✓	✓	Frequency reference input – reference value through keypad, PNU A001 must equal 02 (second parameter set).	0400 Hz	0.0	81	
A021	f-Fix 1	\checkmark	\checkmark	Frequency reference input — fixed frequency (1)	0400 Hz	0.0	81	
A022	f-Fix 2	\checkmark	\checkmark	Frequency reference input — fixed frequency (2)	0400 Hz	0.0	81	·
A023	f-Fix 3	\checkmark	\checkmark	Frequency reference input — fixed frequency (3)	0400 Hz	0.0	81	
A024	f-Fix 4	\checkmark	\checkmark	Frequency reference input — fixed frequency (4)	0400 Hz	0.0	81	
A025	f-Fix 5	\checkmark	\checkmark	Frequency reference input — fixed frequency (5)	0400 Hz	0.0	81	
A026	f-Fix 6	\checkmark	\checkmark	Frequency reference input — fixed frequency (6)	0400 Hz	0.0	81	
A027	f-Fix 7	\checkmark	\checkmark	Frequency reference input — fixed frequency (7)	0400 Hz	0.0	81	
A028	f-Fix 8	\checkmark	\checkmark	Frequency reference input — fixed frequency (8)	0400 Hz	0.0	81	
A029	f-Fix 9	\checkmark	\checkmark	Frequency reference input — fixed frequency (9)	0400 Hz	0.0	81	
A030	f-Fix 10	\checkmark	\checkmark	Frequency reference input – fixed frequency (10)	0400 Hz	0.0	81	
A031	f-Fix 11	\checkmark	\checkmark	Frequency reference input — fixed frequency (11)	0400 Hz	0.0	81	

PNU	Name	RUN	b031 = 10	Designation	Value range	DS	Page	User setting
A032	f-Fix 12	\checkmark	\checkmark	Frequency reference input – fixed frequency (12)	0400 Hz	0.0	81	
A033	f-Fix 13	\checkmark	\checkmark	Frequency reference input – fixed frequency (13)	0400 Hz	0.0	81	
A034	f-Fix 14	\checkmark	\checkmark	Frequency reference input – fixed frequency (14)	0400 Hz	0.0	81	
A035	f-Fix 15	\checkmark	\checkmark	Frequency reference input – fixed frequency (15)	0400 Hz	0.0	81	
A038	f-Jog	\checkmark	\checkmark	Jog mode Jog mode reference value	09.99 Hz	1.00	96	
A039	JogStopMo de	-	\checkmark	Jog mode Motor stop method	00: Free coasting 01: Deceleration ramp 02: DC braking	00	96	
A041	BoostMode	\checkmark	√	Boost function	00: Manual 01: Automatic	00	70	
A241	BoostMode [2]	\checkmark	\checkmark	Boost function (second parameter set)	Values -> PNU A041	00	70	
A042	V-Boost	\checkmark	\checkmark	Boost, manual voltage boost	020 %	1.8	70	
A242	V-Boost [2]	✓	✓	Boost, manual voltage boost (second parameter set)	020 %	0.0	70	
A043	f-Boost	✓	✓	Boost, transition frequency for maximum voltage boost	050 %	10	70	
A243	f-Boost [2]	v	√	Boost, transition frequency for maximum voltage boost (second parameter set)	050 %	0.0	70	
A044	V/f-Mode	-	_	Ulf characteristic	00: Constant torque curve	02	70	
					01: Reduced torque curve			
A244	V/f-Mode [2]	_	_	<i>Ulf</i> characteristic (second parameter set)	Values -> PNU A044	02	70	
A045	V-max	-	-	<i>Ulf</i> characteristic – output voltage	20100 %	100	70	
A245	V-max [2]	_	-	<i>Ulf</i> characteristic – output voltage (second parameter set)	Values -> PNU A045	100	70	
A051	DC-brake	_	\checkmark	DC braking	00: Off: Disabled 01: On: Enabled	00	122	
A052	f-DCB-On	_	✓	DC braking – starting frequency	060 Hz	0.5	122	
A053	t-DCB-Wait	_	\checkmark	DC braking – waiting time	05 s	0.0	122	·
A054	M-DCB	-	\checkmark	DC braking – braking torque	0100 %	0.	122	
A055	t-DCB	-	\checkmark	DC braking – braking duration	060 s	0.0	122	

A056 DCB-Mode - ✓ DC braking - behaviour on activation of the digital input (DB) 00: Timed braking according to value of activation of the digital input (DB) A061 f-maxLimit - ✓ Maximum operating frequency 0400 Hz A261 f-maxLimit - ✓ Maximum operating frequency (second parameter set) 0400 Hz A062 f-minLimit - ✓ Minimum operating frequency (second parameter set) 0400 Hz A262 f-minLimit - ✓ Minimum operating frequency (second parameter set) 0400 Hz A063 f-Jump 1 - ✓ Frequency jump (1) 0400 Hz A064 f- - ✓ Frequency jump (1) 0400 Hz A065 f-Jump 2 - ✓ Frequency jump (1) 0400 Hz A066 f- - ✓ Frequency jump (2) 0400 Hz A066 f- - ✓ Frequency jump (2) 010 Hz A066 f- - ✓ Frequency jump (3) 0400 Hz A066 f- - ✓ Fre	01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5	122 91 91 91 91 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92	
A261f-maxLimit [2]-Image: set of the set	0.0 0.0 0.0 0.0 0.5 0.0	91 91 91 92 92 92 92	
[2]frequency (second parameter set)A062f-minLimit- \checkmark Minimum operating frequency0400 HzA262f-minLimit [2]- \checkmark Minimum operating frequency (second parameter set)0400 HzA063f-Jump 1- \checkmark Frequency jump (1)0400 HzA064f- JumpWidth 1- \checkmark Frequency jump (1) – jump width0400 HzA065f-Jump 2- \checkmark Frequency jump (2)0400 HzA066f- JumpWidth 2- \checkmark Frequency jump (2) – jump width010 HzA066f- JumpWidth 2- \checkmark Frequency jump (2) – jump width0400 HzA067f-Jump 3- \checkmark Frequency jump (3) – jump width010 HzA068f- 3- \checkmark Frequency jump (3) – jump width010 HzA071PICD- \checkmark PID control $\underbrace{00:}\\01:\\01:\\01:\\01:\\01:\\01:\\01:\\01:\\01:\\01:$	0.0 0.0 0.0 0.5 0.0	91 91 92 92 92 92	
A262f-minLimit [2]-Image: second parameter set is se	0.0 0.0 0.5 0.0	91 92 92 92 92	
A063[2]frequency (second parameter set)A063f-Jump 1- \checkmark Frequency jump (1)0400 HzA064f- JumpWidth 1- \checkmark Frequency jump (1) - jump width010 HzA065f-Jump 2- \checkmark Frequency jump (2)0400 HzA066f- JumpWidth 2- \checkmark Frequency jump (2) - jump width010 HzA067f-Jump 3- \checkmark Frequency jump (3)0400 HzA068f- JumpWidth 3- \checkmark Frequency jump (3) - jump width010 HzA068f- JumpWidth 3- \checkmark Frequency jump (3) - jump width010 HzA067f-Jump 3- \checkmark Frequency jump (3) - jump width010 HzA068f- JumpWidth 3- \checkmark Frequency jump (3) - jump width010 HzA071PICD- \checkmark PID control00: 01:Off: Disabled On: EnabledA072PID-P \checkmark PID controller - P- component0.25.0	0.0 0.5 0.0	92 92 92 92	
A064f- JumpWidth 1- \checkmark Frequency jump (1) - jump width010 HzA065f-Jump 2- \checkmark Frequency jump (2)0400 HzA066f- JumpWidth 2- \checkmark Frequency jump (2) - jump width010 HzA066f- JumpWidth 2- \checkmark Frequency jump (2) - jump width010 HzA067f-Jump 3- \checkmark Frequency jump (3)0400 HzA068f- 	0.5	92 92	
JumpWidth 1widthwidthoutput widthA065f-Jump 2 $ \checkmark$ Frequency jump (2) 0400 Hz A066f- JumpWidth 	0.0	92	
A066f- JumpWidth 2- \checkmark Frequency jump (2) - jump width010 HzA067f-Jump 3- \checkmark Frequency jump (3)0400 HzA068f- JumpWidth 3- \checkmark Frequency jump (3) - jump width010 HzA068f- JumpWidth 3- \checkmark Frequency jump (3) - jump width010 HzA071PICD- \checkmark PID control00: 01:Off: Disabled On: EnabledA072PID-P \checkmark PID controller - P- component0.25.0			
A067f-JumpWidth 2 $ \checkmark$ Frequency jump (3) 0400 Hz A067f-JumpWidth 3 $ \checkmark$ Frequency jump (3) 0400 Hz A068f- JumpWidth 3 $ \checkmark$ Frequency jump (3) – jump width 010 Hz A071PICD $ \checkmark$ PID control $00:$ 01: $0ff:$ DisabledA072PID-P \checkmark \checkmark PID controller – P- component $0.25.0$	0.5	92	
A068 f- JumpWidth 3 - Image: Constraint of the product			
JumpWidth width A071 PICD A072 PID-P ✓ PID control O1: Off: Disabled O1: O1:	0.0	92	
A072 PID-P ✓ PID controller – P- component 01: On: Enabled	0.5	92	
A072PID-PImage: A state of the state	00	129	
A073 PID-I V PID controller – I- 0.0150 s	0.1	129	
component	0.1	129	
A074 PID-D Image: V PID controller – D- component 0.00100 s	0.01	129	
A075 PID- – V PID control, display factor 0.0199.99 FeedbackG ain	1.00	129	
A076 PID- – 🗸 PID controller – actual 00: Analog input OI (420 mA)	00	129	
InFeedback value signal PV input 01: Analog input O (010 V)			
02: Serial interface (Modbus)			
10: Calculated value (PNU A143)			
A077 PID- ✓ PID controller – invert input signals 00: Off: Disabled, reference value (+), actual value (–)	00	129	
01: On: Enabled, reference value (–), actu value (+)	al		
A078 PID- ✓ PID controller – output 0100 % OutLimit signal limit	0.0	129	

PNU	Name	RUN	b031 = 10	Designation	Value range	DS	Page	User setting
A081	AVR	_	_	Output voltage (AVR function)	00: On: Enabled 01: Off: Disabled	00	69	
A082	V-AVR	_	_	Output voltage (AVR motor rated voltage)	O2: DOFF: Disabled during deceleration DF51-32: 200, 215, 220, 230, 240 DF51-340: 380, 400, 415, 440, 460, 480 Default setting depends on series	230/4 00	69	
A092	t-acc 2	\checkmark	\checkmark	Acceleration time 2	0.013000 s	15.00	89	
A292	t-acc 2 [2]	\checkmark	\checkmark	Acceleration time 2 (second parameter set)	0.013000 s	15.00	89	
A093	t-dec 2	\checkmark	\checkmark	Deceleration time 2	0.013000 s	15.00	89	
A293	t-dec 2 [2]	\checkmark	✓	Deceleration time 2 (second parameter set)	0.013000 s	15.00	89	
A094	RampSelec	_	_	Acceleration time, specify	00: Digital input (2CH)	00	89	
	tMode			signal for changeover from acceleration time 1 to acceleration time 2	01: Frequency (PNU A095 or A096)	-		
A294	RampSelec	_	_	Acceleration time, specify	00: Digital input (2CH)	00	89	
	tMode [2]			signal for changeover from acceleration time 1 to acceleration time 2 (second parameter set)	01: Frequency (PNU A295 or A296)			
A095	f-acc 1-2	_	_	Acceleration time, frequency for changeover from ramp time 1 to ramp time 2	0.0400 Hz	0.0	89	
A295	f-acc 1- 2 [2]	-	-	Acceleration time, frequency for changeover from ramp time 1 to ramp time 2 (second parameter set)	0.0400 Hz	0.0	89	
A096	f-dec 1-2	_	-	Deceleration time, frequency for changeover from ramp time 1 to ramp time 2	0.0400 Hz	0.0	90	
A296	f-dec 1- 2 [2]	_	_	Deceleration time, frequency for changeover from ramp time 1 to ramp time 2 (second parameter set)	0.0400 Hz	0.0	90	
A097	accMode	-	-	Acceleration time,	00: Linear	00	75	
				characteristic	01: S curve	-		
A098	decMode	_	_	Deceleration time,	00: Linear	00	75	
				characteristic	01: S curve			
A101	f-minl-In	-	\checkmark	Analog input (OI-L), frequency at minimum reference value	0400 Hz	0.0	85	
A102	f-maxl-In	_	\checkmark	Analog input (OI-L), frequency at maximum reference value	0400 Hz	0.0	85	

PNU	Name	RUN	b031 = 10	Designation	Value range	DS	Page	User setting
A103	f-minl- InOffset	_	✓	Analog input (OI-L), minimum reference value (offset)	0100 %	0.	85	
A104	f-maxl- InOffset	-	\checkmark	Analog input (OI-L), maximum reference value (offset)	0100 %	100.	85	
A105	f-	_	\checkmark	Analog input (OI-L),	00: Value from PNU A101	01	85	
	minModel- In			selection of starting frequency applied to the motor at minimum reference value.	01: 0 Hz			
A141	CalcInA	-	\checkmark	Calculator – select input A	00: Keypad value	02	123	
					01: Keypad potentiometer			
					02: Analog input (0)			
					03: Analog input (OI)			
					04: Serial interface (Modbus)			
A142	CalcInB	-	\checkmark	Calculator – select input B	Values -> PNU A141	03	123	
A143	CalcMode	_	\checkmark	Calculator – operation	00: Addition (A + B)	00	123	
					01: Subtraction (A – B)			
					02: Multiplication (A \times B)			
A145	ADDOffset	\checkmark	\checkmark	Calculator – offset frequency	0400 Hz	0.0	124	
A146	ADDOffset	-	\checkmark	Calculator – offset	Value from PNU A145	00	124	
	Sign			frequency, prefix	00: Plus			
					01: Minus			
A151	f-minPoti- In	-	\checkmark	Potentiometer (keypad), starting frequency	0400 Hz	0.0	86	
A152	f-maxPoti- In	-	\checkmark	Potentiometer (keypad), end frequency	0400 Hz	0.0	86	
A153	f-minPoti- InOffset	-	\checkmark	Potentiometer (keypad), starting point	0100 %	140	86	
A154	f-maxPoti- InOffset	_	\checkmark	Potentiometer (keypad), end point	0100 %	100	86	
A155	f-	_	\checkmark	Potentiometer (keypad),	00: Value from PNU A151	01	86	
	minModeP oti-In			starting frequency source	01: 0 Hz			

PNU	Name	RUN	b031 = 10	Designation	Valu	e range	DS	Page	User setting
b001	PowOff -	-	✓	POWER, restarting mode after power supply interruption	00:	Fault signal E 09, automatic restart at 0 Hz	00	118	
	Restart Mode				01:	Automatic restart at set starting frequency after expiry of time set with PNU b003.			
					02:	After the time set with PNU b003 has elapsed, the frequency inverter synchronizes to the current motor rotation speed and the motor is accelerated to the reference current in the set ramp times.			
					03:	After the time set under PNU b003 has elapsed, the inverter synchronizes to the current motor rotation speed and the motor brakes to a stop in the set deceleration time. A fault message is then displayed.			
b002	t- PowOff -max	-	✓	POWER, permissible power supply downtime	0.3	.25 s	1.0	118	
b003	t- Restart Wait	-	\checkmark	POWER, waiting time before automatic restart after power supply failure	0.3	.100 s	1.0	80	
b004	UV-	_	\checkmark	POWER, fault signal on	00:	Off: Disabled	00	119	
	Mode			intermittent supply voltage failure or undervoltage	01:	On: Enabled			
b005	UV-	_	\checkmark	POWER, number of automatic	00:	16 restarts	00	119	
	Restarts Max			restarting attempts after intermittent supply voltage failure or undervoltage	01:	No limit			
b012	I-OL	-	\checkmark	Thermal overload, tripping current	Depe	$1.2 \times I_e$ [A] nding on frequency inverter's rated nt (I_e)	XX	116	
b212	I-OL [2]	_	✓	Thermal overload, tripping current (second parameter set)	Defa	.1.2 \times $I_{\rm e}$ [A] ult, dependent on frequency inverters's current (le)	xx (I _e)	116	
b013	OL-	_	\checkmark	Thermal overload,	00:	Reduced torque 1	01	116	
	Mode			characteristic (torque curve)	01:	Constant torque			
					02:	Reduced torque 2			
b213	OL- Mode [2]	-	\checkmark	Thermal overload, characteristic (torque curve) (second parameter set)	Value	es → PNU b013	01	116	
b021	ImaxMo	-	\checkmark	Motor current limitation –	00:	Off: Disabled	01	114	
	tor			function	01:	On: Enabled in acceleration phase and at constant speed			
1.00.1					02:	Enabled only at constant speed			
b221	lmaxMo tor [2]	-	\	Motor current limitation – function (second parameter set)	Value	es → PNU b021	01	114	
b022	ImaxMo torLimit	-	\checkmark	Motor current limitation, tripping current	Defa	$1.5 \times I_e$ [A] ult, dependent on frequency inverters's current (le)	$I_{\rm e} imes$ 1.5	114	

PNU	Name	RUN	b031 = 10	Designation	Valu	e range	DS	Page	User setting
b222	ImaxMo torLimit [2]	-	√	Motor current limitation, tripping current (second parameter set)	Value	es → PNU b022	$I_{\rm e} imes 1.5$	114	
b023	t- ImaxMo tor	-	\checkmark	Motor current limitation, deceleration time constant	0.1	.3000 s	1.0	114	
b223	t- ImaxMo tor [2]	-	\checkmark	Motor current limitation, deceleration time constant (second parameter set)	0.1	.3000 s	1.0	114	
b028	ImaxMo torSour	-	\checkmark	Motor current limitation, limit current selection	00:	Value of PNU b022 Analog input O-L	00	114	
	ce				01.				
b228	ImaxMo	-	\checkmark	Motor current limitation, limit	00:	Value of PNU b222	00	114	
	torSour ce [2]			current selection (second parameter set)	01:	Analog input O-L			
b031	PNUAcc ess	_	\checkmark	Parameter access inhibit (access rights)	00:	Access to all parameters except PNU b031 disabled when digital input SFT is enabled (-> PNU C001: 15).	01	139	
					01:	Access to all parameters except PNU b031 and F001 (A020, A220, A021 to A035, A038) disabled when digital input SFT is enabled (→ PNU C001: 15).			
					02:	Access to all parameters blocked, except PNU b031.			
					03:	Access rights to all parameters except PNU b031 and F001 (A020, A220, A021 to A035, A038) disabled.			
					10:	Extended access rights to parameters in RUN mode.			
b080	GainAn alogOut	\checkmark	\checkmark	Analog output AM, gain factor	02	255	100	106	
b082	f- minRise	_	\checkmark	Increased starting frequency (e.g. at high static friction)	0.5	.9.9 Hz	0.5	69	
b083	f- PulseRa te	_	_	Carrier frequency	21	4 kHz	5.0	137	
b084	ResetM	_	_	Initializing – function	00:	Clear fault register	00	140	
	ode			-	01:	Load default settings (DS)			
					02:	Clear fault register and load default settings (DS)			
b085	SysRegi	_	_	Initialization, country-specific	00:	Japan	01 {02}	140	
	on			default settings	01:	Europe			
					02:	USA			
b086	f- OutGai n	\checkmark	\checkmark	Frequency indication scaling factor for value in PNU d007	0.1	.99.9	1.0	106	
				STOP key (keypad)	00:	Enabled	00	135	
b087	StopKey	—	\checkmark	JIOI Key (Keypau)	00.	LIIUDICU	00	155	

PNU	Name	RUN	b031 = 10	Designation	Valu	e range	DS	Page	User setting
b088	Restart	_	\checkmark	Motor restart after removal of	00:	Restart with 0 Hz	00	80	
	Mode			the FRS signal	01:	Restart with the determined output frequency (current motor speed)			
b089	Display	\checkmark	\checkmark	Display value with a fieldbus	01:	Output frequency (d001)	01	147	
	SourceR O3			module (RS 485)	02:	Output current (d002)			
	03				03:	Direction of rotation (d003)			
					04:	Actual value (PV) (d004)			
					05:	State of digital inputs (d005)			
					06:	State of digital outputs (d006)			
					07:	Scaled output frequency (d007)			
b091	StopKey Mode	-	-	Behaviour after a STOP signal	00:	DEC, braking to 0 Hz with deceleration ramp	00	135	
					01:	FRS, free run stop			
b130	DCLink	_	\checkmark	Internal DC link, stop	00:	Off: Disabled	00	136	
	OVStop Ramp			deceleration ramp on overvoltage in the internal DC link	01:	On: Enabled			
b131	V-	\checkmark	\checkmark	Deceleration ramp, switching	330.	395 V (U _e = 230 V)	380/760	136	
	DCdecS			threshold dependent on internal DC link voltage	660.	$790 \text{ V} (U_{e} = 400 \text{ V})$	-		
	top			internal DC link voltage	Defa	ult, dependent on rated voltage ($U_{ m e}$)	-		
b150	Auto-f-	_	\checkmark	Clock frequency, automatic	00:	Off: Disabled	00	137	
	PulseFr eqRed			clock frequency reduction on overtemperature	01:	On: Enabled			
b151	FastCM	\checkmark	\checkmark	Inverter, reduce inverter's	00:	OFF	00	138	
	D	v		response time (RDY) to a control signal	01:	ON			

PNU	Name	RUN	b031 = 10	Designation	Valu	e range	DS	Page	User setting		
C001	Digiln 1	_	_	Digital input 1 – function	00:	FWD: Clockwise rotating field	00	79			
					01:	REV: Anticlockwise rotating field					
					02:	FF1: Fixed frequency selection, bit 0 (LSB)					
					03:	FF2: Fixed frequency selection, bit 1					
					04:	FF3: Fixed frequency selection, bit 2					
					05:	FF4: Fixed frequency selection, bit 3 (MSB)					
					06:	JOG: Jog mode					
					07:	DCB: DC braking					
					08:	SET: Select second parameter set					
					09:	2CH: Second time ramp					
					11:	FRS: Free run stop (free coasting, = controller inhibit)					
				12:EXT: External fault message13:USP: Unattended start protection							
					15:	SFT: Parameter access inhibit					
					16:	AT: change over to analog input OI					
					18:	RST: Reset fault signal					
					19:	PTC: PTC thermistor input (digital input 5 only)					
					20:	STA: Three-wire control start signal					
					21:	STP: Three-wire control stop signal					
					22:	F/R: Three-wire control, direction of rotation					
					23:	PID: Disable PID control					
							24:	PIDC: Reset integral component of PID control			
					27:	UP: Acceleration (motor potentiometer)					
					28:	DWMN: Deceleration (motor potentiometer)					
					29:	DWN-0Hz: Motor potentiometer, reset saved value of motor potentiometer to 0 Hz					
					31:	OPE: Operator keypad					
		5	50:	ADD: Offset – add value from PNU A145 to frequency reference value.							
					51:	F-TM: Digital input, mode: control signal terminals preferred.					
					52:	RDY: Inverter, reduce response time to control signals					
					53:	SP-SET: Second parameter set with special functions					
					255:	(no function)					

PNU	Name	RUN	b031 = 10	Designation	Value range	DS	Page	User setting
C201	Digiln 1 [2]	_	_	Digital input 1 – function (second parameter set)	Values -> PNU C001	00	79	
C002	Digiln 2	-	_	Digital input 2 – function	Values -> PNU C001	01	79	
C202	Digiln 2 [2]	-	-	Digital input 2 – function (second parameter set)	Values -> PNU C001	01	79	
C003	Digiln 3	-	-	Digital input 3 – function	Values -> PNU C001	02 {16}	79	
C203	Digiln 3 [2]	-	-	Digital input 3 – function (second parameter set)	Values -> PNU C001	02	79	
C004	Digiln 4	-	-	Digital input 4 – function	Values -> PNU C001	03 {13}	79	
C204	Digiln 4 [2]	-	-	Digital input 4 – function (second parameter set)	Values -> PNU C001	03	79	
C005	Digiln 5	-	-	Digital input 5 – function	Values -> PNU C001	18 {09}	79	
C205	Digiln 5 [2]	-	-	Digital input 5 – function (second parameter set)	Values -> PNU C001	18	79	
C011	Digiln1L	-	-	Digital input 1 – logic	00: High signal triggers switching.	00	80	
	ogic				01: Low signal triggers switching.			
C012	Digiln2L ogic	_	_	Digital input 2 – logic	Values -> PNU C011	00	80	
C013	Digiln3L ogic	-	-	Digital input 3 – logic	Values -> PNU C011	00	80	
C014	Digiln4L ogic	-	-	Digital input 4 – logic	Values -> PNU C011	00	80	
C015	Digiln5L ogic	-	_	Digital input 5 – logic	Values -> PNU C011	00	80	

PNU	Name	RUN	b031 = 10	Designation	Valu	e range	DS	Page	User setting
C021	DigiOut	_	_	Digital output 11 – signal	00:	RUN: In operation	01	107	
	11				01:	FA1: Frequency reference value reached			
					02:	FA2: Frequency signal – output frequency exceeds value in PNU C042 (during acceleration ramp) or PNU C043 (during deceleration ramp).			
					03:	OL: Overload warning – motor current exceeds value in PNU C041.			
					04:	OD, PID control: Reference/actual value difference exceeds signalling threshold set with PNU C044.			
					05:	AL: Fault – fault/alarm signal			
					06:	Dc: Warning – reference value at input O (0 to +10 V) lower than value in PNU b082 or current signal at input OI below 4 mA.			
					07:	FBV: PID control – actual value monitoring (PV) signal on breach of limit values PNU C052/C053.			
					08:	NDc: Fault/warning dependent on PNU C077 – communication watchdog timer has expired: communications are faulty.			
					09:	LOG: Shows result of logic link performed through PNU C143.			
					10:	ODc: Fault/warning: Communication overload or interrupted (with optional DE51-NET-CAN, DE51-NET-DP).			
C022	DigiOut 12	_	_	Digital output 12 – signal	Value	es → PNU CO21	00	107	
C026	DigiOut K1	_	-	Relay K1 – signal	Value	es → PNU CO21	05	110	
C028	Analog	-	-	Analog output AM, measured	00:	f-Out: Current output frequency	00	106	
	OUT			value indication selection	01:	I-Out: Current output current			
C031	DigiOut	-	-	Digital output 11 – logic	00:	Normally open contact (NO)	01, 00	108	
	11Logic				01:	Normally closed contact (NC)			
C032	DigiOut 12 logic	-	-	Digital output 12 – logic	Value	es → PNU C031	01, 00	108	
C036	DigiOut K1Logic	_	-	Relay K1 (K11-K12) – logic	Value	es → PNU CO31	01	110	
C041	OL- Level	-	✓	Output function — warning threshold for overload signal (OL)	Defa	$P \times I_{\rm e}$ [A] ult, dependent on frequency inverter's d current ($I_{\rm e}$)	I _e	115	
C241	OL- Level [2]	-	✓	Output function — warning threshold for overload warning (OL) (second parameter set)	Defa	$2 \times I_{\rm e}$ [A] ult, dependent on frequency inverter's d current ($I_{\rm e}$)	I _e	115	
C042	FA2acc Level	_	\checkmark	Output function — signalling threshold for frequency signal FA2 during acceleration	04	100 Hz	0.0	112	

PNU	Name	RUN	b031 = 10	Designation	Value range	DS	Page	User setting
C043	FA2dec Level	-	√	Output function – signalling threshold for frequency signal FA2 during deceleration	0400 Hz	0.0	112	
C044	PIDFeed backDe viationL evel	-	√	Output function: Signalling threshold, maximum PID control deviation	0100 %	3.0	131	
C052	PIDStag e2OffLi mit	-	\checkmark	PID controller — switch-off threshold for second stage of PID controller	0100 %	100	134	
C053	PIDStag e2OnLi mit	_	\checkmark	PID controller – switch-on threshold for second stage of PID controller	0100 %	0.0	134	
C071	Baudrat	_	\checkmark	Communication – baud rate	04 4800 bit/s	06	146	
	е				05: 9600 bit/s			
					06: 19200 bit/s			
C072	COMAd dress	-	\checkmark	Communication – address	132	1	146	
C074	COMPa	-	\checkmark	Communication – parity	00: None	00	146	
	rity				01: Even			
					02: Odd			
C075	COMSt	_	\checkmark	Communication – stop bits	1: 1 bit	1	146	
	opBits				2: 2 bits			
C076	COMErr	_	\checkmark	Communication – behaviour of	00: Switch off on fault signal E60	02	147	
	orMode			frequency inverter on communication errors	01: Decelerate to standstill at deceleration ramp and then switch off with error E60.			
					02: No fault signal			
					03: FRS: Free run stop (free coasting, = controller inhibit)			
					04: DEC: Braking to 0 Hz at set deceleration ramp			
C077	t- COMW atchdog	_	✓	Communication – set monitoring time (watchdog).	099.99 s	0.00	147	
C078	t- COMErr Wait	_	✓	Communication – waiting time (latency between request and response)	01000 ms	0	147	
C081	GainV- In	\checkmark	\checkmark	Analog input O – reference value signal compensation	0200 %	100	82	
C082	Gainl-In	\checkmark	\checkmark	Analog input OI – reference value signal compensation	0200 %	100	82	
C085	Thermis torOffse t	✓	\checkmark	Thermistor compensation (digital input 5)	0200 %	100	117	
C086	Analog OutOffs et	\checkmark	✓	Analog output AM – offset compensation	010 V	0.0	106	

PNU	Name	RUN	b031 = 10	Designation	Valu	e range	DS	Page	User setting
C091	Debug	\checkmark	\checkmark	Debug mode, view additional	00:	Do not show parameter	00	142	
				parameters	01:	Show parameter			
C101	UV- MotorP	-	\checkmark	Motor potentiometer – reference value for motor	00:	Clear last value and use default for PNU F001	00	95	
	otiMod e			potentiometer after power supply interruption	01:	Use saved motor potentiometer value set with UP/DWN function through digital inputs.			
C102	ResetSt opMod	_	\checkmark	Reset function (RST) – response to a Reset signal	00:	On a rising edge the fault signal is reset and the motor is stopped.	00	183	
	е				01:	On a falling edge the fault signal is reset and the motor is stopped.			
					02:	On a rising edge the fault message is reset.			
C141	Logicln	-	-	Logic function – select input A	00:	RUN: In operation	00	126	
	A				01:	FA1: Frequency reference value reached			
					02:	FA2: Frequency signal – output frequency exceeds value in PNU C042 (during acceleration ramp) or PNU C043 (during deceleration ramp).			
					03:	OL: Overload warning – motor current exceeds value in PNU C041.			
					04:	OD, PID control: Reference/actual value difference exceeds signalling threshold set with PNU C044.			
					05:	AL: Fault – fault/alarm signal			
					06:	Dc: Warning – reference value at input O (0 to +10 V) lower than value in PNU b082 or current signal at input OI below 4 mA.			
					07:	FBV: PID control – actual value monitoring (PV) signal on breach of limit values PNU C052/C053.			
					08:	NDc: Fault/warning dependent on PNU C077 – communication watchdog timer has expired: communications are faulty.			
					10:	ODc: Fault/warning: Communication overload or interrupted (with optional DE51-NET-CAN, DE51-NET-DP).			
C142	LogicIn B	-	-	Logic function – select input B	Valu	es → PNU C141	01	126	
C143	LogicM	_	_	Logic function – select link	00:	[LOG] = A AND B	00	126	
	ode			[LOG]	01:	[LOG] = A OR B			
					02:	[LOG] = A XOR B			
C144	t- onDigiO ut11	-	\checkmark	Digital output 11 – deceleration time (On)	01	00 s	0.0	108	
C145	t- offDigi Out11	_	\checkmark	Digital output 11 – deceleration time (Off)	01	00 s	0.0	108	

PNU	Name	RUN	b031 = 10	Designation	Value range	DS	Page	User setting
C146	t- onDigiO ut12	-	√	Digital output 12 – deceleration time (On)	0100 s	0.0	108	
C147	t- offDigi Out12	_	\checkmark	Digital output 12 – deceleration time (Off)	0100 s	0.0	108	
C148	t- onDigiO utK1	_	\checkmark	Relay K1 – deceleration time (On)	0100 s	0.0	110	
C149	t- offDigi OutK1	_	✓	Relay K1 – deceleration time (Off)	0100 s	0.0	110	

PNU	Name	RUN	b031 = 10	Designation	Value range	DS	Page
d001	f-Out	\checkmark	\checkmark	Output frequency display	0.0400.0 Hz (0.1 Hz)	_	58
d002	I-Out	\checkmark	\checkmark	Output current display	0.0999.9 A (0.1 A)	_	58
d003	RotationFeedBa ck	\checkmark	\checkmark	Direction of rotation display	 F: Clockwise (forward) rotating field o: STOP r: Anticlockwise (reverse) rotating field 	_	58
d004	PID- ScaledFeedback	~	√	PID feedback display	 0.0099.99 (0.01 %) 100.0999.9 (0.1 %) 10009999 (1 %) 	_	129, 58
d005	DigilnState	\checkmark	\checkmark	Indication – status of digital inputs 1 to 5	-	-	58
d006	DigiOutState	\checkmark	\checkmark	Indication – status of digital outputs 11 and 12, and relay K1	_	-	58
d007	f-OutScaled	\checkmark	\checkmark	Indication – scaled output frequency	0.009999 (0.01/0.1/1/10 Hz)	-	58
d013	V-Out	\checkmark	\checkmark	Indication – output voltage	0600 V (1 V)	_	58
d016	t-RUN	\checkmark	\checkmark	Indication – operation time counter	 09999 (1 h) 1000099990 (10 h) 100000999000 (1000 h) 	_	58
d017	t-ON	\checkmark	\checkmark	Indication – mains On time	 09999 (1 h) 1000099990 (10 h) 100000999000 (1000 h) 		58
d080	TripCounter	\checkmark	\checkmark	Indication – total number of occurred faults	0 - 65530	_	58
d081	Trip 1	\checkmark	√	Indication – fault 1 (last fault signal)	 Values at time of power Off: Fault signal E Frequency (Hz) Current (A) Internal DC link voltage (V DC) Total operating hours in RUN mode Total Power On time, power supply connected (h) 	-	58
d082	Trip 2	\checkmark	\checkmark	Indication – fault 2	Values -> PNU d081	_	58
d083	Trip 3	\checkmark	\checkmark	Indication – fault 3	Values -> PNU d081	_	58

PNU	Name	RUN	b031 = 10	Designation	Value range	DS	Page	Referenc e value
F001	f-ref	√	v	Reference value, input through keypad	 Frequency: 0.0400 Hz (0.1 Hz) Process variable 0.00 to 9999 % with PID control enabled (A071 = 01) with display factor (A075). 	0.0	81	
F002	t-acc 1	√	v	Acceleration time 1	 0.0199.99 (0.01 s) 100.0999.9 (0.1 s) 10003000 (1 s) 	10.00	74	
F202	t-acc 1 [2]	\checkmark	✓	Acceleration time 1 (second parameter set)	Values → PNU F002	10.00	74	
F003	t-dec 1	√	v	Deceleration time 1	 0.0199.99 (0.01 s) 100.0999.9 (0.1 s) 10003000 (1 s) 	10.00	74	
F203	t-dec 1 [2]	\checkmark	\checkmark	Deceleration time 1 (second parameter set)	Values -> PNU F003	10.00	74	
F004	Rotation	\checkmark	\checkmark	Direction of rotation – function of Start key (keypad)	 00: Clockwise rotating field (FWD) 01: Anticlockwise rotating field (REV) 	00	74	

PNU	Name	RUN	b031 = 10	Designation	Value range	DS	Page
H003	P-Motor	_	-	Motor – assigned rating [kW]/{HP} at rated voltage (U _e)	0.2; 0.4; 0.55; 0.75; 1.1; 1.5; 2.2; 3.0; 4.0; 5.5; 7.5; 11.0 – {0.2; 0.4; 0.75; 1.5; 2.2; 3.7; 5.5; 7.5; 11.0} Default depends on rated voltage and type rating.		66
H203	P-Motor [2]	-	-	Motor – assigned rating [kW]/{HP} at rated voltage (U _e) (second parameter set)	Values → PNU H003		66
H004	MotorPolePairs	-	-	Motor – number of poles	2, 4, 6, 8	4	66
H204	MotorPolePairs [2]	-	-	Motor – number of poles (second parameter set)	Values → PNU H004	4	66
H006	MotorStabilizin gFactor	\checkmark	\checkmark	Motor – stabilization constant	0255	100	66
H206	MotorStabilizin gFactor [2]	\checkmark	\checkmark	Motor – stabilization constant (second parameter set)	Values → PNU F006	100	66

Index

AbbreviationsAcceleration time 1ADD – Offset frequencyAL – fault messageAM – Frequency indicationAnalog inputfilter time constant (PNU A016)Analog reference inputAnticlockwise operationAutomatic restartAutomatic voltage regulation AVRAVR – automatic voltage regulation	74 124 183 106 83 82 78 184 69
B Base frequency Baud rate Block diagram Boost Boosting the output voltage Brake	146 50 70
Chopper Braking DC Dynamic Induction Regenerative Resistance Transistor	25, 121 25 25 25 25 25 26
Bypass	
C Cable lengt, permisssible (motor)	216 209 20 78
Connecting To output Connection Electrical Power section Connection cable	36 36
Control Deviation exceeded OD	71
mode Control signal terminals Function Controller inhibit and free run stop (FRS)	43

Current		
Inrush		221
Limit .		113
Mains	rated	220
Phase		221

D	Dahlander pole-changing motor
	Data transfer rate
	DC braking
	DE51-NET-CAN, CANopen interface module
	DE51-NET-DP, PROFIBUS-DP interface module 210
	Debugging
	Deceleration ramp, interrupting
	Deceleration time 174
	Default setting140
	Delta-connected circuit22
	DEX-KEY-10, keypad204
	DEX-KEY-6, keypad 198
	DEX-MNT-NET, mounting frame
	Digital
	Input
	Output
	Dimensions
	Display
	Parameters
	du/dt filter
	Dynamic braking
	_ ,
E	Earthing
	-compliant connection
	-compliant installation
	-compliant setup
	Interference class 22
	Measures
	End frequency68
	end values
	EXT – external fault signal 119
F	F/R – Reverse direction of rotation (3-wire)
•	FA1 – frequency reached
	FA2 – frequency exceeded
	Fault
	Messages
	Register
	Signal, external
	Signal \rightarrow Fault signal (AL)
	Fault message (AL) 183 Fault message (AL) 181
	Fault messages
	FBV – feedback value signal
	Features of the frequency inverters
	Feedback value signal134

FF1 to FF493

	Filter time constant, analog input
	Characteristic → Output voltage
	Reached signal.111Value, entering.73Value, viewing.73FRS – free run stop.80F-TM – Control signal terminal mode.98
	Fuses
H	Harmonics19
I	Induction braking.25Initialization.140Input
J	JOG – jogging
Κ	Key to part numbers
L	Limit values

М	Mains
	Connection
	Contactor
	contactor
	Filter
	frequency
	rated current
	Reactor
	voltage
	Maintenance
	Maintenance switch
	Mathematical function 123
	Menu overview
	Modbus
	Monitoring functions 113
	Motor
	Cable length, permissible
	Circuit type
	Delta connection
	Potentiometer
	Rated current
	Reactor
	Star connection
	Stop, type of
	Mounting frame DEX-MNT-NET
	Mounting position
N	Nameplate
	Network configuration 19
	Noise
	Immunity 22
0	OD – PID control deviation signal
U	OL – overload signal
	OPE – reference value through keypad
	Operation
	Output
	Analog (AM) 106
	Digital (11 and 12) 104
	Digital (relay K1) 105
	Terminals
	Voltage
	Overload signal
Р	p.f. correction systems
•	Parallel connection of multiple motors
	Parameter
	Access protection
	List
	Protection
	Set, second
	Part number
	PDS – Power Drive System
	PE conductor
	Personnel protection
	Phase current

PID
PID control deviation
PID – activate/deactivate PID control
PNU list
Pole-changing three-phase motor
POWER
Power section, connecting
Power terminals
arrangement
Conductor cross-sections
connecting
Tightening torque 217
PROFIBUS-DP 210
Protection of parameters 139
PTC 117
PTC thermistor input 117
Pulse frequency
Pulse-current sensitive RCCB 20
Padio interference suppression 22

R	Radio interference suppression
	Ratings
	RDY – verkürzte Reakzionszeit
	Reactor, motor
	Reaktionszeit, verkürzen 138
	Reference value input
	Regenerative braking 25
	Relay (signalling)
	Reluctance motor
	Reset
	Residual current circuit-breakers
	Resistance brake
	Restart, automatic 184
	REV – Start/stop anticlockwise operation
	Reversing direction
	RFI
	Filter
	RFI filter
	RS485 interface
	RST – Reset
	RUN mode
	RUN mode, fault message
	RUN signal
	NUN SIYIIAI

	Slipring motor.41SP-SET – Special functions in the 2nd parameter set.100STA – Pulse start (3-wire).97Star-connected circuit.22Starting, initial.51Stop key.135STP – Pulse stop (3-wire).97Supply voltage.118connecting.99Symbols.5Synchronous motors.41System overview.7System settings.135
T	Technical data193THD (total harmonic distortion)15, 19Thermistor117Three-wire control97Tightening torques217Time ramp89TN network19Total harmonic distortion (THD)15, 19Troubleshooting186
	TT network
U	UL approval226Unattended start protection120Universal RCCB20USP – unattended start protection120
V	VoltageBoost70Output70regulation, automatic69supply118Voltage balance19Voltage imbalance, mains voltage15
W	Warranty 14 Weights 196