6 Commissioning

6.1 Preparation of withdrawable circuit-breaker

6.1.1 Inserting the circuit-breaker in withdrawable unit

CAUTION

Remove padlocks on the shutter!

Check circuit-breaker position indicator

1

CAUTION

Ensure it shows DISCON. Otherwise the circuit-breaker cannot be inserted.

Pull out guide rails

2

Place the circuit-breaker in the withdrawable unit and push it into disconnected position

CAUTION

Push circuit-breaker as far as the stop into the disconnected position; the latches at the side must engage!

Close the panel door

6.1.2 Position of the circuit-breaker in the withdrawable

 unit| | Diagram | Position indicator | Power circuit
 (2) | Auxiliary circuit (1) | Panel door
 (3) | Shutters
 (4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maintenance position | | Green
 응
 CONNECT
 TEST
 DISCON | Disconnected | Disconnected | Open | Closed |
| Disconnected position | | Green | Disconnected | Disconnected | Closed | Closed |
| Test position | | Blue
 CONNECT
 TEST
 o
 DISCON | Disconnected | Connected | Closed | Closed |
| Connected position | | Red | Connected | Connected | Closed | Open |

(1) Auxiliary circuit
(2) Power circuit
(3) Panel door
(4) Shutter, optional

6.1.3 Release racking handle/withdraw racking handle

4

1 Switch off
2 Push in crank
3 Draw out handle
4 Press lever up and hold
5 Pull out crank
6.1.4 Circuit-breaker to connected (CONNECT) position

Position indicator

6.1.5 Insert racking handle

CAUTION

Do not turn the crank handle beyond the stop! Otherwise the racking mechanism will be damaged.

6.2 Charging the spring

Charging by hand

	Can cause personal injury. Support a withdrawn, free-standing circuit-breaker properly before charging (e.g. by maintenance work on the work bench).

F Operating force
n Number of strokes
(1) Spring is charged

ATTENTION
To charge the spring, grip the pump handle tightly and make each stroke fully and continuously to the end. The 9th stroke must be carried out exactly as the previous eight although the operating force considerably increases. When the spring is fully charged the lever moves without resistance.

Charging by motor drive

The motor drive starts automatically after connection of power supply. At the end of the charging process the motor automatically switches off.

Directly after the spring is discharged the motor switches on again so that the spring is again charged (after a switch on).
\rightarrow Retrofitting the motor operator (page 12-1)

6.3 Checklist for commissioning

Work to be done	$\sqrt{ }$
Switch off circuit-breaker	
Move to connected position with withdrawable circuit-breaker	
Insert rating plug \rightarrow Rated current module (page $9-35$)	
Press red pin to reset Mechanical reclosing lockout	
Set the overcurrent release to appropriate values \rightarrow Overcurrent release (page 9-1)	
Apply auxiliary and control voltages	
Close the panel door	
Inserting racking handle	
Charging the storage spring	
Conditions (according to version)	
Undervoltage release Energized	
Shunt release Not energized	
Electrical closing lockout $(\rightarrow$ page 8-3) Not energized	
Electrical interlocking of closing release in the Disabled switch board control wiring	
Mutual mechanical interlock Not effective	
Locking devices Not activated	
Indications	

6.4 Closing

6.5 Switch off

OFF button

6.6 Tripping by overcurrent release

Overcurrent release

Indications
Without motor operating mechanism

With motor operating mechanism (storage spring still charged)

6.7 Re-starting a tripped circuit-breaker

Note

The tripping reason can be inquired with the "PROTOCOL" button on the overcurrent release. It is stored for at least two days when the over current release is activated for at least 10 minutes before the tripping.

1 Find trip cause			
2 Indicator		I $\underbrace{\square}_{\square}$	
	Overload in main conductor Overcurrent in neutral conductor Short-circuit: short-time- delay trip	Short-circuit: non delayed trip	Earth-fault trip
3 Find and remedy causes	Check downstream load Check overcurrent release settings	Inspect panel Check downstream load	
4 Inspect circuitbreaker		Inspect contact system for possible damage \rightarrow Maintenance (page $24-1$)	
5 Clear trip cause	$\xrightarrow[0075-01-\mathrm{C}]{\text { CLEAR }}$		
6 Reset reclosing lockout	Standard: Circuit-breaker with mechanical reclosing lockout Manual reset reclosing lockout and the trip message $(\rightarrow$ page $10-1$)	Automatic reset reclosing lockout (\rightarrow page 10 2)	
7 Reset tripped indicator			
8 Indications	Without motor operating mechanism		0 $\substack{5 \\ \vdots \\ \vdots \\ \vdots \\ \hline \\ \hline \\ \hline}$ SPRING
	With motor operating mechanism (storage spring still charged)		
9	\rightarrow Charging the spring (page 6-4) \rightarrow Closing (page 6-5)		

6.8 Switching off and discharging the storage spring

6.9 Troubleshooting

X	X	Circuit-breaker cannot be closed though the circuit-breaker is ready to close Ready-to-close indicator shows: ready	1. Closing release not energized or incorrectly energized	Check or apply correct voltage
	X		2. Circuit-breaker in disconnected position in withdrawable unit	Rack circuit-breaker into test or connected position
X			3. control circuit plug unplugged	Plug in control circuit plug

[^0]| Fixed-
 mounted
 circuit-
 breaker | Withdrawabl
 e circuit-
 breaker | Disturbance | Cause | Remedy |
| :--- | :--- | :--- | :--- | :--- |
| | X | Circuit-breaker cannot be moved
 from the maintenance position into
 the disconnected position | 1.Racking mechanism of circuit-
 breaker not in disconnected
 position (note circuit-breaker
 position indicator) | Rack the mechanism into
 disconnected position (green
 position indication) |

| X | Circuit-breaker cannot be fitted in
 the guide rails | 1. Factory mounted coding of
 circuit-breaker and
 withdrawable unit doesn't match | Use circuit-breaker according to
 withdrawable unit label |
| :--- | :--- | :--- | :--- | :--- |

	X	When racking from the disconnected into the test position, the circuit-breaker does not move during the first approx. 6 turns	Not a fault	Rack further

	X	Racking handle cannot be drawn out	1. Circuit-breaker is closed	Press "Mechanical OFF" button and pull racking handle block out ${ }^{2}$)
	X		2. Panel door not completely closed (locking device as accessory)	Close the panel door

X		Racking handle cannot be pushed in	1. Racking handle is interlocked	Rack circuit-breaker into disconnected, test or connect position, unlatch crank and push crank fully in

X		Panel door cannot be opened (door interlock as accessory)	1.Closed circuit-breaker is preventing opening of panel door	Open the circuit-breaker ${ }^{2)}$
	X		2.Circuit-breaker in connected position	Rack circuit-breaker into test or disconnected position ${ }^{2)}$

2) Only permissible if the power circuit may be interrupted!

7 Frame sizes, dimension drawings

7.1 Overview external dimensions

3-pole	Fixed mounted			Withdrawable units		
	b	h	t	b	h	\mathbf{t}
IZM $(\operatorname{IN}) .1-\ldots$	320	434	357	320	460	471
IZM(IN).2-...	460	434	357	460	460	471
IZM(IN).3-...	704	434	357	704	460	471

4 pole	Fixed mounted			Withdrawable units		
	b	h	t	b	h	t
IZM(IN).1-4...	410	434	357	410	460	471
IZM(IN).2-4...	590	434	357	590	460	471
IZM(IN).3-4...	914	434	357	914	460	471

Height "h" up to the top edge of the control circuit plug in screw terminal design for circuit-breaker/switch disconnector with $\mathrm{U}_{\mathrm{e}} \leqq 690 \mathrm{~V}$.

Depth " t " up to end of horizontal connection.
7.2 IZM(IN)...1-..., fixed-mounting, 3- and 4-pole

Standard version for horizontal connection

Front connection (single-hole fitting): IZM1-XAT1F...

Front connection (double-hole fitting): IZM1-XATF...

Note

When front connections are used, a partition between busbar and arcing space must be fitted on the system side.
(1) Mounting space for removal of arcing chamber covers
(3) Slots (4 mm wide, 5 mm deep) for supporting phase partions in the system
(4) Control circuit plug, screw terminals
(5) Control circuit plug, spring terminals
(6) Dimension to inside of closed switchboard door
(7) Fixing points for the circuit-breaker in the system; $4 \times$ weld nut M8
(8) Interlock in OFF (optional accessory)
(9) Key operation (optional accessory)
(11) Connection area

Rated current $\mathbf{I}_{\mathbf{u}}$			\mathbf{l}
	Horizontal	Vertical	Front connection
Up to 1000 A	10	10	10
$1250-1600 \mathrm{~A}$	15	15	15

Vertical connection: IZM1-XATV...

7.3 IZM(IN)...1-..., withdrawable, 3- and 4-pole

Standard version for horizontal connection

Front connection (double-hole fitting): IZM1-XATF...-AV

Note

When front connections are used, a partition between busbar and arcing space must be fitted on the system side.
(3) Slots (4 mm wide, 5 mm deep) for supporting phase partions in the system
(4) Control circuit plug, screw terminals
(5) Control circuit plug, spring terminals
(6) Dimension to inside of closed switchboard door
(7) IZM in connected position
(8) IZM in test position
(9) IZM in disconnected position
(10) Fixing holes, $\varnothing 10 \mathrm{~mm}$
(11) Connection area

Rated current $\mathbf{I}_{\mathbf{u}}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
	Horizontal	Vertical	Front connection
Up to 1000 A	10	10	10
$1250-1600 \mathrm{~A}$	15	15	15

Vertical connection: IZM1-XATV...-AV

Flange connection: IZM1-XATA...-AV

Standard version for horizontal connection

Front connection (single-hole fitting): IZM2-XAT1F...

Front connection (double-hole fitting): IZM2-XATF...

Vertical connection: IZM2-XATV...

Note

When front connections are used, a partition between busbar and arcing space must be fitted on the system side.
(1) Mounting space for removal of arcing chamber covers With $\mathrm{U}_{\mathrm{e}}=\mathbf{1 0 0 0} \mathrm{V}, 175 \mathrm{mms}$ are required for removal of the arcing chamber.
(3) Slots (4 mm wide, 5 mm deep) for supporting phase partions in the system
(4) Control circuit plug, screw terminals
(5) Control circuit plug, spring terminals
(6) Dimension to inside of closed switchboard door
(7) Fixing points for the circuit-breaker in the system; $4 \times$ weld nut M8
(11) Connection area
(12) Circuit-breaker top edge with $U_{e}=1000 \mathrm{~V}$

Rated current $\mathbf{I}_{\mathbf{u}}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
	Horizontal	Vertical	Front connection
UP to 2000 A	10	10	10
2500 A	15	15	20
3200 A	30	30	20

7.5 IZM(IN)...2-..., withdrawable, 3 and 4 pole

Standard version for horizontal connection

Front connection (double-hole fitting): IZM2-XATF...-AV

Note

When front connections are used, a partition between busbar and arcing space must be fitted on the system side.
(3) Slots (4 mm wide, 5 mm deep) for supporting phase partions in the system
(4) Control circuit plug, screw terminals
(5) Control circuit plug, spring terminals
(6) Dimension to inside of closed switchboard door
(7) IZM in connected position
(8) IZM in test position
(9) IZM in disconnected position
(10) Fixing holes, $\varnothing 10 \mathrm{~mm}$
(11) Connection area
(12) Top edge of withdrawable unit with $U_{e}=1000 \mathrm{~V}$

Rated current $\mathbf{I}_{\mathbf{u}}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
	Horizontal	Vertical	Front connection
Up to 2000 A	10	10	10
2500 A	15	15	20
3200 A	30	30	20

Vertical connection: IZM2-XATV...-AV

Flange connection: IZM2-XATA...-AV

7.6 IZM(IN)...3-..., fixed-mounting, 3- and 4-pole

Horizontal connection, standard $\leqq 6300$ A

Front connection (single-hole fitting): IZM3-XAT1F... $\leqq 4000$ A

Note

When front connections are used, a partition between busbar and arcing space must be fitted on the system side.
(1) Mounting space for removal of arcing chamber covers With $\mathrm{U}_{\mathrm{e}}=\mathbf{1 0 0 0} \mathrm{V}, 175 \mathrm{mms}$ are required for removal of the arcing chamber.
(3) Slots (4 mm wide, 5 mm deep) for supporting phase partions in the system
(4) Control circuit plug, screw terminals
(5) Control circuit plug, spring terminals
(6) Dimension to inside of closed switchboard door
(7) Fixing points for the circuit-breaker in the system; $4 \times$ weld nut M10
(11) Connection area
(12) Circuit-breaker top edge with $\mathrm{U}_{\mathrm{e}}=1000 \mathrm{~V}$

Front connection (double-hole fitting): IZM3-XATF... $\leqq 4000$ A

Vertical connection: IZM3-XATV... $\leqq 5000$ A

7.7 IZM(IN)...3-..., withdrawable, 3- and 4-pole

Horizontal connection, standard $\leqq 5000 \mathrm{~A}$

Note

When front connections are used, a partition between busbar and arcing space must be fitted on the system side.

(3) Slots (4 mm wide, 5 mm deep) for supporting phase partions in the system
(4) Control circuit plug, screw terminals
(5) Control circuit plug, spring terminals
(6) Dimension to inside of closed switchboard door
(7) IZM in connected position
(8) IZM in test position
(9) IZM in disconnected position

Front connection (double-hole fitting): IZM3-XATF...-AV $\leqq 4000$ A

(10) Fixing holes, $\varnothing 10 \mathrm{~mm}$
(11) Connection area
(12) Top edge of withdrawable unit with $U_{e}=1000 \mathrm{~V}$

Rated current $\mathbf{I}_{\mathbf{u}}$	\mathbf{a}	\mathbf{b}
4000 A	40	210
5000 A	40	210
6300 A	5	245

Vertical connection: IZM3-XATV...-AV $\leqq 6300$ A

Flange connection: IZM3-XATA...-AV $\leqq 4000$ A

7.8 External current transformer for \mathbf{N}-conductor

 IZM.1-...

IZM.2-...

IZM.3-...

7.9 Voltage transformers

7.10 Further dimension drawings

- Mounting brackets for mounting on vertical surface $(\rightarrow$ page $5-2$)
- Door sealing frame IP40 $(\rightarrow$ page 22 - 1)
- Cover IP55 (\rightarrow page 23-1)

8 Circuit diagrams

8.1 Terminal assignment, accessories

Control circuit plug IZM-XKL(-AV) tor customer connection
Control circuit plug X8, X7, X6, X5 are identical in construction

X8: optional control circuit plug
 (Standard for IZM...-U... and IZM...-D...)

X7: optional control circuit plug
Not available with
IZM-XCOM-DP communication function.
The communications module is at position X7.
(1) electronic

Remote reset XFR overload release

G transformer S2
G transformer S1 IZM-XW(C) N current transformer S
Trip signalling switch XHIA

IZM-XW(C) N current transformer S2 external voltage transformer, star External voltage transformer L3 External voltage transformer L2 External voltage transformer L1 0 V DC 24 V DC
Internal system bus + Internal system bus -

XHIS signalling switch on first voltage release

Signalling switch on second release XHIS

X6: standard control circuit plug
first shunt release XE/A
Standard auxiliary switch XHI: S1 "N/O"
Standard auxiliary switch XHI: S1 "N/C"
Closing release XE/A
"Ready to close" signal XHIB Standard auxiliary switch XHI: S2 "N/O" Standard auxiliary switch XHI: S2 "N/C" X5: optional control circuit plug

Only XUV "non-delayed release"
XU, XUV or second voltage release XA1 Standard auxiliary contact XHI11/XHI22/XHI31: S3 "NO", XHI40: S7 Standard auxiliary contact XHI11/XHI22/XHI31: S3 "NC", XHI40: S7 Standard auxiliary contact XHI22: S4 "NO", XHI31/XHI40: S8 "NO" Auxiliary switch XHI22: S4 "N/C", XHI31/XHI40: S8 "N/O"

Motor operato Optional motor cut-off switch XMS
(1) black-white
(2) brown

8.2 Auxiliary and control switches

**) same location as S8

Part number suffix when ordered with basic device	Fitting with auxilliary contacts					
	S1	S2	S3	S4	S7	S8
Standard	X	X				
+IZM-XHI22	X	X	X	X		
+IZM-XHI40	X	X			X	X
+IZM-XHI31	X	X	X			X

Part number suffix when ordered seperately (mounting position as required)	Number	
	Normally open contact	Normally closed contact
IZM-XHI20	2	-
IZM-XHI11	1	1
IZM-XHI22	2	2

8.3 Signal switch

XHIA, XHIS, XHIS1 and XHIF cannot be combined with (+)IZM-XCOM-DP.
XHIA, XHIS and XHIS1 cannot be combined with (+)IZM-XBSS.

XHIS, XHIS1:

- N/O contact closed means undervoltage release activated or shunt release not activated- switch-on possible.
- N/O contact open means, undervoltage release deactivated or shunt release activated - not possible to switch circuit-breaker on.

8.4 Voltage release/electrical switch-on inhibit

XA, XA1 and XE have the same construction, an individual type is always designated $X E / A$.

*) emergency stop or bridge
Voltage trips with 100 \% DF may act as an electrical closing lockout.

8.5 Closing release/electrical ON

8.6 Motor operator

*) same location as XEE

$$
\begin{array}{cc}
-\mathrm{M} \\
24-30 \mathrm{~V} \mathrm{DC} \\
48-60 \mathrm{VDC} \\
\mathrm{~L}+ & \rightarrow X 5.2 \\
\mathrm{~L}- & \rightarrow X 5.1
\end{array}
$$

8.7 Remote reset coil

8.8 Protection circuit for overcurrent release XZMU, XZMD

8.8.1 With Breaker Status Sensor (XBSS) and metering module XMH

1) Terminating resistor on $X 8$-1 / $X 8$-2, when no external systembus module.
2) When no metering module and also no BSS module is used: direct connection X8 to XZM...

- BSS module: Breaker Status Sensor
- Internal system bus: Bus system for interconnection of circuitbreaker components to each other and to the field-bus (PROFIBUS-DP)
- XZM...: Overcurrent release
- S40 Signalling switch ready-to-close
- S41 Signalling switch spring charged
- S42 Signalling switch on first release XA...
- S43 Signalling switch on second release XA1 or XU or XUV
- S44 Signalling switch ON-OFF position
- S45 Trip signalling switch

8.8.2 Only metering module XMH

1)Terminating resistor on $X 8-1$ / $\times 8-2$, when no external systembus module.
$(\rightarrow$ page $9-60$)

8.8.3 Breaker Status Sensor (XBSS) only

1)Terminating resistor on $X 8$-1 / $X 8$-2, when no external systembus module.
$(\rightarrow$ page $9-60$)

[^0]: 1) Safety feature! This remedy action amounts to a reversal (disabling) of a safety precaution installed earlier. Please do ensure that such disabling is now permissible/authorized!
