10 Reclosing lockout and remote reset

Automatic reset and remote reset	Part no.
Automatic reset of the mechanic reclosing lockout	+IZM-XOW
Remote reset	+IZM-XFR24DC
(includes IZM-XOW function)	+IZM-XFR48DC
	1. Automatic reset of the mechanical reclosing lockout
2. Rest of the tripping indication (red pin and IZM-XHIA reset)	+IZM-XFR120AC/125DC
	+IZM-XFR230AC/250DC

10.1 Manual reset of the reclosing lockout

1	Circuit-breaker is tripped by overcurrent
2	
3	Manual reset Press tripped indicator (red pin), till it latches
4	
5	Indications Circuit-breaker is ready to close again, if spring is charged and no interlock is active

10.2 Automatic reset of reclosing lockout

1	Circuit-breaker is tripped by overcurrent		
2	Automatic reset		
3	Indications Circuit-breaker is immediately ready to close again, if storage spring is charged		tripped Signal switches
4	Reset tripped indicator and tripped signal		
	Remote reset Option: Remote reset of the tripped indicator and the tripped signal by means of a remote reset coil $(\rightarrow$ page $10-3)$	Manual reset Press tripped indicator (red pin), till it latches	
5	BREAKER TRIPPED \square RESET (1) Tripped indicator reset	Reset	

10.3 Retrofitting automatic reset

With the automatic reset of the reclosing lockout the tripping magnet is automatically reset after the overcurrent release has tripped. The circuit-breaker is immediately ready to close again. The tripped indication and the tripped signal must be reset either manually on the overcurrent release or by means of the remote reset magnet.

	Danger of injury! The switching mechanism could cause personal injury Before removing the operating panel switch off power and discharge the spring $(\rightarrow$ page $24-2)$. - - Remove the plug X5 - - - Press OFF button ON button -

- Remove front panel (\rightarrow page 24-6)
- Remove overcurrent release (\rightarrow page 9 - 39)

10.3.1 Installing reset mechanism

Removing tripping magnet F5

Metal bracket for overcurrent release (silver):

[^0]Plastic bracket for overcurrent release (black):

1 Press back catch
2 Remove tripping magnet

Installing reset spring and bolt

1 Fit reset spring
2 Fit bolt with lock washer
3 Secure bolt with lock washer on the left

Installing tripping magnet F5

CAUTION

Do not squeeze the connecting cables of the tripping magnet during installation!

Metal bracket for overcurrent release (silver):

1 Fix tripping magnet
2 Fix retaining spring, on the right
3 Snap retaining spring on, on the left

Plastic bracket for overcurrent release (black):

Then:

- Install overcurrent release (\rightarrow page 9 -39)
- Install front panel (\rightarrow page 24 - 13)

CAUTION

Minimum pause $=80 \mathrm{~ms}$ between tripping by overcurrent release and the next switch-on of the circuit-breaker.

	Part no.
Automatic reset of the reclosing lockout for overcurrent release bracket in metal (until 07/2005)	IZM-XOW-M
Automatic reset of the reclosing lockout for overcurrent release bracket in plastic	IZM-XOW

10.4 Retrofitting the remote reset option

Firstly retrofit the automatic reset of the reclosing lockout \rightarrow page $10-3$).

CAUTION

Remote reset magnet usable only with automatic reset reclosing lockout!
Otherwise remote reset magnet will be overloaded and destroyed.

10.4.1 Fitting

	Danger of injury! The switching mechanism could cause personal injury when the operating panel is removed. Before removing the operating panel switch off power and discharge the spring (\rightarrow page $24-2)$. - Remove the plug X5 - Press OFF button - Press ON button - Press OFF button once again.

- Remove front panel (\rightarrow page 24-6)
- Remove overcurrent release (\rightarrow page 9 - 39)

Mounting the cut-off switch S13 for remote reset coil

Metal bracket for overcurrent release (silver):

CAUTION

Tighten self-tapping screws carefully. The signalling switches must not be deformed during installation.

(1) Leg spring

Not necessary for overcurrent release bracket in plastic (black).
(2) S13 rear

Plastic bracket for overcurrent release (black):

Mounting remote reset magnet

[^1]
10.4.2 Connecting wires

\rightarrow Circuit diagrams (page 8-1)

Note

$(\rightarrow$ page $5-16 \mathrm{ff}$) It may be necessary to retrofit missing control-circuit connections (knife contact rail, auxiliary plugs, sliding contacts for connection area).

XB. 13
XB. 14

10.4.3 Function test

Then:

- Install overcurrent release (\rightarrow page 9 - 39)
- Install front panel (\rightarrow page 24-13)

10.4.4 Updating the options label

Auxiliary and control switches	Part no.
Standard auxiliary switch 2 N/O, 2 N/C	XHI
Additional auxiliary switch	$(+)$ IZM-XHI20
	$(+)$ IZM-XHI11
	$(+)$ IZM-XHI31
	$(+)$ IZM-XHI40
Tripped signalling switch for overcurrent release bracket in metal (until 07/2005)	IZM-XHIA-M
Tripped signalling switch for overcurrent release bracket in plastic	$(+) I Z M-X H I A$
Signal for voltage release state on shunt release	$(+) I Z M-X H I S$
Signal for voltage release state on 2nd shunt release or undervoltage release	+ IZM-XHIS1
Signalling switch for ready-to-close	$(+) I Z M-X H I B$
Signalling switch for storage spring charged	$(+) I Z M-X H I F$

Note

Screw terminals are standard on the customer side, spring terminals are optional
The XHIA, XHIS(1) auxiliary switches cannot be combined with (+)IZM-XCOM-DP or (+)IZM-XBSS.
The XHIF auxiliary switch cannot be combined with
(+)IZM-XCOM-DP.
XHIS and XHIS1 are identical. The different part nos define the installation location with complete delivery ex-works (comparable with XA and XA1).

11.1 Signalling switches

(2) Signalling switch XHIS for 1 st shunt release $(\rightarrow$ page $13-3)$
(3) Signalling switch for ready-to-close XHIB
(4) Signalling switch for spring state XHIF
(5) Signalling switch XHIS1 for 2nd shunt release or undervoltage release $(\rightarrow$ page $13-3$)
(6) Contact position auxiliary switch S1 (standard)
(7) Contact position-driven auxiliary switch S2 (standard)
(8) Contact position-driven auxiliary switch S4 (XHI22) or S8 (XHI40)
(9) Contact position-driven auxiliary switch S3 (XHI11(22)(31) or S7 (XHI40)

11.1.1 Mounting signalling switches

	Danger of injury! The switching mechanism could cause personal injury when the operating panel is removed. Before removing the operating panel switch off power and discharge the spring $(\rightarrow$ page $24-2)$. - Remove the plug X5 - Press OFF button - Press ON button - Press OFF button once again.

- Remove front panel (\rightarrow page 24-6)

11.1.2 Mounting signalling switches at trip unit

- Remove overcurrent release (\rightarrow page 9 - 39)

Metal bracket for overcurrent release (silver):

CAUTION

Tighten self-tapping screws carefully. The signalling switches must not be deformed during installation.

Necessary for IZM circuit-breackers with metal system carrier (07/2005)
Plastic bracket for overcurrent release (black):

(1) 2 snap pins

11.2 Control switches

(1) Cut-off switch S13 for remote reset $(\rightarrow$ page $10-4)$
(2) Cut-off switch S14 for shunt release XA... 05 (overexcited) $(\rightarrow$ page 13-4)
(3) Cut-off switch S15 for closing release XE... 05 (overexcited) $(\rightarrow$ page $13-4)$
(4) Switch XEE "Electrical ON" or (\rightarrow page $13-5$)
motor disconnecting switch XMS $(\rightarrow$ page $12-3)$

11.3 Communication switches

\rightarrow Status signals for the communication (page $9-47$)

11.4 Connecting wires

Circuit diagrams $(\rightarrow$ page $8-2$)

Note

It may be necessary to retrofit missing control-circuit connections (knife contact rail, auxiliary plugs, sliding contacts for connection area).
$(\rightarrow$ page $5-16 \mathrm{ff}$)

Updating the options label
\square

12 Motor operator

For automatic charging of the spring after every switch ON. Will be switched on if spring is discharged and control voltage is applied. Is automatically de-energized after charging.

	Voltage	Power consumption	Part no.
Motor operator	$24-30 \mathrm{~V} \mathrm{DC}$	110 W	120 W
	$48-60 \mathrm{~V} \mathrm{DC}$	$(+)$ IZM-XM24-DC	
	$110-127 \mathrm{~V} \mathrm{AC/110-125} \mathrm{~V} \mathrm{DC}$	150 W	$(+)$ IZM-XM48-60DC
	$208-240 \mathrm{~V} \mathrm{AC/220-250} \mathrm{~V} \mathrm{DC}$	130 W	$(+)$ IZM-XM110AC/DC
Motor cut-off switch			$(+)$ IZM-XM230AC/220DC
Make-break operations counter			$(+)$ IZM-XMS

12.1 Retrofitting the motor operator

	Danger of injury! When the operating panel is removed. Before removing the operating panel switch off power and discharge the spring (\rightarrow page $24-2)$. - - Remove the plug X5 - - Press OFF button -

- Remove front panel $(\rightarrow$ page $24-6$)

Mounting the motor on the spline shaft

Terminals:
X5. 1 (L-)
X5.2 (L+)
\rightarrow Circuit diagrams (\rightarrow page 8-4)

Note

It may be necessary to retrofit missing control-circuit connections (knife contact rail, auxiliary plugs, sliding contacts for connection area).
$(\rightarrow$ page 5-16 ff)

12.2 Mechanical operations counter

The mechanical operations counter can only be retrofitted when the circuit-breaker is equiped with a motor operator. The make-break operations are also counted if the spring-operated stored-energy mechanism is charged with the manual lever (motor without supply).

12.3 Motor cut-off switch on the operating panel

Option.
For de-energizing the motor operator. Supplied pre-assembled with a soldered wire.

Not possible if "electrical ON" available

Installing motor disconnect switch

Connecting motor disconnect switch

- Open terminal X5.1 and disconnect wire X5-1 (wire from motor operating mechanism)
- Connect wire X5-1 of the disconnect switch XMS to terminal X5.1
- Route wire $\mathrm{X} 5-1$ of the motor operating mechanism to terminal lug 4 of the disconnect switch and solder it there.

Installing the selector knob

Deburr!

Note
It may be necessary to retrofit missing control-circuit connections (knife contact rail, auxiliary plugs, sliding contacts for connection area).
$(\rightarrow$ page $5-16 \mathrm{ff})$

12.4 Updating the options label

13 Voltage releases, closing coil, electrical ON

13.1 Overview

Closing release	AC V $50 / 60 \mathrm{~Hz}$	DC V	Part no.	Single part no.
Closing release XE (100 \% duty factor, suitable for continuous operation)	-	24	+IZM-XE24DC	IZM-XE/A24DC
	-	30	+IZM-XE30DC	IZM-XE/A30DC
	-	48	+IZM-XE48DC	IZM-XE/A48DC
	-	60	+IZM-XE60DC	IZM-XE/A60DC
	110	110	+IZM-XE110AC/DC	IZM-XE/A110AC/DC
	230	220	+IZM-XE230AC/220DC	IZM-XE/A230AC/220DC
Overexcited closing release XE (5 \% duty factor, not suitable for continuous operation)	-	24	+IZM-XE24DC05	IZM-XE/A24DC05
	-	48	+IZM-XE48DC05	IZM-XE/A48DC05
	110-127	110-125	+IZM-XE110AC/DC05	IZM-XE/A110AC/DC05
	208-240	220-250	+IZM-XE230AC/DC05	IZM-XE/A230AC/DC05

Signalling switch	Part no.
Signalling switch on 1st voltage release	+IZM-XHIS
Signalling switch on 2nd voltage release	+IZM-XHIS1

Electrical ON	Part no.
Button with sealing cap	+IZM-XEE-TP
Key-operated button CES	+IZM-XEE-C

$\mathbf{1}^{\text {st }}$ voltage release	$\begin{aligned} & \text { AC V } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	DC V	Part no .	Single part no.
$1^{\text {st }}$ shunt release XA (100 \% duty factor, suitable for continuous operation)	-	24	+IZM-XA24DC	IZM-XE/A24DC
	-	30	+IZM-XA30DC	IZM-XE/A30DC
	-	48	+IZM-XA48DC	IZM-XE/A48DC
	-	60	+IZM-XA60DC	IZM-XE/A60DC
	110	110	+IZM-XA110AC/DC	IZM-XE/A110AC/DC
	230	220	+IZM-XA230AC/220DC	IZM-XE/A230AC/220DC
overexcited shunt release XA (5% duty factor, not suitable for continuous operation)	-	24	-	IZM-XE/A24DC05
	-	48	-	IZM-XE/A48DC05
	110-127	110-125	-	IZM-XE/A110AC/DC05

$2^{\text {nd }}$ voltage release	$\begin{aligned} & \text { AC V } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	DC V	Part no.	Single part no.
$2^{\text {nd }}$ shunt release XA1	-	24	+IZM-XA1(24DC)	IZM-XE/A24DC
	-	30	+IZM-XA1(30DC)	IZM-XE/A30DC
	-	48	+IZM-XA1(48DC)	IZM-XE/A48DC
	-	60	+IZM-XA1(60DC)	IZM-XE/A60DC
	110	110	+IZM-XA1(110AC/DC)	IZM-XE/A110AC/DC
	230	220	+IZM-XA1(230AC/220DC)	IZM-XE/A230AC/220DC
Overexcited shunt release XA1 (5 \% duty factor, not suitable for continuous operation)	-	24	-	IZM-XE/A24DC05
	-	48	-	IZM-XE/A48DC05
	110-127	110-125	-	IZM-XE/A110AC/DC05
Undervoltage release XU (non-delayed)	-	24	+IZM-XU24DC	IZM-XU24DC
	-	30	+IZM-XU30DC	IZM-XU30DC
	-	48	+IZM-XU48DC	IZM-XU48DC
	-	60	+IZM-XU60DC	IZM-XU60DC
	110-127	110-125	+IZM-XU127AC/125DC	IZM-XU127AC/125DC
	208-240	220-250	+IZM-XU240AC/250DC	IZM-XU240AC/250DC
	380-415	-	+IZM-XU415AC	IZM-XU415AC
Undervoltage release XUV (delayed)	-	48	+IZM-XUV48DC	IZM-XUV48DC
	110-127	110-125	+IZM-XUV127AC/125DC	IZM-XUV127AC/125DC
	208-240	220-250	+IZM-XUV240AC/250DC	IZM-XUV240AC/250DC
	380-415	-	+IZM-XUV415AC	IZM-XUV415AC

Note

Closing coils and shunt releases have the same construction.
Select part no. IZM-XE/A... when ordering separately.

Mounting locations

(1) $1^{\text {st }}$ shunt release XA
(2) Signalling switch XHIS
(3) Closing release XE
(4) $2^{\text {nd }}$ shunt release XA1 or undervoltage release (undelayed) $X U$ or undervoltage release (delayed) XUV
(5) Signalling switch XHIS1 or S43 (XBSS)
(6) Cut-off switch S 14 for shunt release $5 \% \mathrm{DF}$ (overexcited)
(7) Cut-off switch S15 for closing release XE 5% DF (overexcited)

Voltage trips with 100 \% DF may be used as an electrical closing lockout.

CAUTION

Check that the closing coil with 5 \% duty factor can only be activated when the circuit-breaker is in the ready state. Otherwise the closing release will be destroyed.

13.2 Retrofitting voltage releases

	Danger of injury! when the operating panel is removed. Before removing the operating panel switch off power and discharge the spring $(\rightarrow$ page $24-2)$. - - Remove the plug X5 - - Press OFF button -

- Remove front panel (\rightarrow page 24-6)

For better mounting remove plug connector.

13.3 Fitting of optional signalling switch on the voltage release

Signals the switch position of the auxiliary release.

(1) See-saw
(2) Signalling switch
(3) Guide
(4) Groove

13.4 Setting delay times on undervoltage release

Instantaneous release XU

Time-delayed release XUV

13.5 Installation of cut-off switch for overexcited

 shunt release and closing coil

Note

The cut-off switches S14 and S15 are supplied with the XE/A 5\% duty factor.

13.6 Retrofitting Electrical ON

Cannot be combined with a motor cut-off switch.

Installing micro-switch

IZM-XEE-TP or IZM-XEE-C can be used only in combination with closing release.

Inserting pushbutton

In order to avoid erroneous switch-on: Install a sealing cap XVD (option) on top.

13.7 Mechanical function test

	CAUTION
$\mathbf{~}$	Danger if spring is charged!

	Shunt release	Closing release
1	\rightarrow Charge the storage spring manually (page 6-4)	
2	\rightarrow Closing (page 6 - 5)	
3		
4		Circuit-breaker on
5		\rightarrow Switch off (page 6-5)

13.8 Connecting wires

Circuit diagrams $(\rightarrow$ page $8-3$)

Note

It may be necessary to retrofit missing control-circuit connections (knife contact rail, auxiliary plugs, sliding contacts for connection area) (\rightarrow page 5 - 16).

Terminals

XE : X6.7/X6.8
XA : X6.13/X6.14
XA1, XU : X5.11/X5.12
XUV : X5.11 ... X5. 14
XEE : X7.9/X6.7

13.9 Finally

- Install front panel (\rightarrow page 24-13)
- Fitting control circuit plug (\rightarrow page 5-18)
- Connecting wires to control circuit plug (\rightarrow page 5-17)
- Withdrawable: move circuit-breaker to test position
$(\rightarrow$ page 6-2)

13.10 Electrical function test

	CAUTION
This function check must only be carried out with	
the front panel fitted.	
The withdrawable circuit-breaker should not be in the connected position.	

	Closing release	Undervoltage release
1	\rightarrow Charge the storage spring manually (page 6-4)	
2		
3	Closing release operation	Interrupt XU/XUV auxiliary voltage!
4	Circuit-breaker switches on	

13.11 Updating the options label

13.12 Capacitor storage device

The capacitor storage device NZM-XCM is a upstream device for the shunt release. Without mains power the installed capacitor holds enough power for up to 12 hours to operate the shunt trip once. The configuration of the capacitor unit can be undertaken independently of the circuit-breaker. The NZM-XCM is connected to the incoming side.

Technical data:

Rated operational voltage	U_{e}	V AC	230
Rated operational current	I_{e}	mA	<10
Inrush current (peak value)	I_{e}	A	3
Connection cross section, single- core- or multi-core with ferrule		mm^{2}	$1 \times 0.5-2.5) /$ $2 \times(0.5-1.5)$
		AWG	$1 \times(20-14) /$ $2 \times(20-16)$

[^0]: 1 Loosen retaining spring
 2 Remove retaining spring
 3 Remove tripping magnet

[^1]: (1) Leg spring

 Not necessary for overcurrent release bracket in plastic (black).

