Sistema di collegamento SmartWire SWIRE-GW-MB

Tutti i nomi delle marche e dei prodotti sono marchi di fabbrica o marchi registrati dei relativi detentori.

Assistenza in caso di guasto

Si prega di contattare telefonicamente la filiale locale: <u>Eaton.com/aftersales</u> oppure Il servizio di assistenza tecnica Moeller: +49 (0) 180 5 223822 (de, en) <u>AfterSalesEGBonn@eaton.com</u>

Istruzioni per l'uso originale

La versione tedesca di questo documento è rappresentata dal manuale di istruzioni originale.

Traduzione del manuale di istruzioni originale

Tutte le edizioni del presente documento non in lingua tedesca sono traduzioni del manuale di istruzioni originali.

Prima edizione 2008, data di redazione 11/08 Seconda edizione 2009, data di redazione 07/09 Tutti i diritti, anche la traduzione sono riservati.

© 2008 by Eaton Industries GmbH, 53105 Bonn

Produzione : René Wiegand Traduzione: globaldocs GmbH

Tutti i diritti riservati, compresi quelli relativi alla traduzione.

Vietata la riproduzione o elaborazione, copia o diffusione mediante sistemi elettronici di alcuna parte del presente manuale in qualunque forma (stampa, fotocopia, microfilm o altro procedimento) senza l'autorizzazione scritta della Eaton Industries GmbH, Bonn.

Con riserva di modifiche.

Prima di iniziare l'installazione

- Togliere tensione prima di collegare l'apparecchio.
- Assicurarsi che la reinserzione sia impossibile.
- Verificare l'assenza di tensione.
- Mettere a terra e cortocircuitare.
- Coprire o segregare le parti accesibili che rimangono sotto tensione.
- Tener conto delle direttive di progetto (IL/AWA) valevoli per l'apparecchio.
- Su questo sistema/apparecchio deve intervenire solo personale espressamente qualificato secondo EN 50110 (VDE 0105, Parte 100).
- Maneggiare l'apparecchio solo dopo aver scaricato il proprio corpo da cariche elettrostatiche, per evitare di danneggiarlo.
- L'impianto di terra funzionale (FE) deve essere collegato al conduttore di protezione (PE) oppure al punto di equipotenzialità. L'installatore è direttamente responsabile dell'esecuzione di questo collegamento.
- I cavi di alimentazione e segnalazione devono essere installati in modo da evitare che accoppiamenti induttivi e capacitivi possano influire sul funzionamento dell'automazione.
- I componenti di automazione ed i relativi accessori devono essere montati in modo da essere protetti contro azioni non intenzionali.
- Per evitare che l'accidentale rottura di un cavo o collegamento possa portare il sistema in uno stato non definito, adottare, per l'accoppiamento ingressi/uscite, tutti gli accorgimenti hardware e software necessari.

- L'alimentazione a 24 V deve garantire la « separazione elettrica di tensione ridotta ». Si devono utilizzare esclusivamente apparecchi che rispondano alle norme IEC 60364-4-1 e HD 384.4.41.52 (VDE 0100 parte 410).
- La tensione di rete deve rimanere entro i limiti prescritti nei dati tecnici. Variazioni fuori dai limiti anzidetti possono causare malfunzionamenti o situazioni di pericolo.
- Gli interruttori di emergenza ed i dispositivi di esclusione secondo IEC/EN 60204-1 devono mantenere la loro efficacia in tutte le condizioni di funzionamento dell'impianto. Lo sblocco di tali interruttori o dispositivi non deve in alcun caso provocare il riavvio incontrollato del sistema.
- Gli apparecchi in custodia o armadio devono essere azionati solo con coperchi o sportelli chiusi.
- Devono essere adottati accorgimenti per far sì che un programma interrotto da un abbassamento o interruzione di rete riprenda regolarmente. Non devono potersi presentare condizioni di pericolo, nemmeno per brevi durate. Se necessario occorre forzare l'esclusione di emergenza.
- In luoghi ove si possano verificare danni a persone o a cose a causa delle apparecchiature, è necessario prevedere misure esterne (per es. tramite apposito interruttore di prossimità indipendente, interblocchi meccanici, ecc.) che garantiscano in ogni modo il normale funzionamento anche in caso di guasto o disturbo.

Indice

	Note relative al presente manuale	3
	Protocollo di modifica	3
	Gruppo target	3
	Altri manuali relativi all'apparecchio	3
	Convenzioni di lettura	4
1	Gateway MODBUS-RTU - SWIRE-GW-MB	5
	Composizione del sistema	6
	Struttura del SWIRE-GW-MB	7
	Descrizione della funzione	7
	Esempio per moduli	
	SmartWire	8
	 Modulo SmartWire per DILM 	8
	 Modulo I/O SmartWire 	9
2	Installazione	11
	Impostazione degli indirizzi utente e dei parametri	pro-
	tocollo MODBUS-RTU	11
	Connessione del cavo di collegamento SmartWire	13
	Collegamento della tensione di alimentazione	14
	Collegamento del MODBUS-RTU	16
	– Trasmissione mediante RS232	16
	– Trasmissione tramite RS485	1/
	Resistenze di terminazione	19
	Cablaggio della rete a norma EMC	19
	Separazione galvanica	21
	Lunghezze massime di linea	21
3	Messa in servizio	23
	Prima inserzione	23
	Significato dei LED di stato	24
	– LED Ready	24
	– U-Aux-LED	24
	 LED SmartWire 	25
	– LED MODBUS-RTU	25

4	Funzionamento tramite MODBUS-RTU	27
	Integrazione nella configurazione bus di campo	27
	Raffigurazione dati degli utenti SmartWire	28
	 Rappresentazione dei dati 	29
	- Rappresentazione abbreviata e completa dei bit	31
	 Aree dati di controllo 	38
	– Check bit	38
	– Lifebit	39
	– Bit di stato	39
	 Identificativo produttore e apparecchio degli uter SmartWire 40 	nti
	 Versione hardware e software 	41
	 Numero utenti SmartWire 	43
	 Impostare il Watchdog-Timer 	43
	Possibilità di accesso alle aree di registro	44
	MODBUS-funzioni	45
	 Struttura di un telegramma MODBUS 	45
	 – Istruzioni di scrittura 	46
	 – Istruzioni di lettura 	48
	Funzioni di diagnosi di MODBUS (0x08)	49
	 Richiamo delle informazioni apparecchio SWI- RE-GW-MB 51 	
	– Dati diagnostici	51
	 Verifica della configurazione SmartWire 	52
	Ricerca errori	53
5	Appendice	55
	Dati tecnici	55
	– Generalità	55
	Display a LED	57
	MODBUS-RTU	57
	Sistema di collegamento SmartWire	58
	Dimensioni	59

Note relative al presente manuale

Protocollo di modifica		Rispetto alla prima edizione del 11/08 sono presenti le seguenti modifiche.			
Data di Pagina redazione		Parola chiave	nuovo	Modi- fica	elimi- nato
07/09	Seconda di coper- tina	Assistenza in caso di guasto		√	
	6	paragrafo "Composizione del sistema"		\checkmark	
Gruppo ta	rget	Il presente manuale è destinat e agli ingegneri. Esso presuppo bus di campo MODBUS-RTU e MODBUS-RTU master. Inoltre con l'uso del sistema SmartWi	o ai tecnici ne una sol della prog occorre ave re.	i dell'autoi ida conosc rammazio ere dimest	mazione enza del ne di un ichezza
Altri manuali relativi all'apparecchio		Maggiori informazioni relative all'argomento SmartWire si trovano nei seguenti manuali Eaton:			
		 Sistema di collegamento Sm MN03402001Z-IT (precedente denominazione Sistema di connessione Sma MN05006003Z-IT (precedente denominazione Sistema di connessione Sma MN03407001Z-IT (precedente denominazione 	artWire, N AWB1210 rtwire, EA AWB2528 rtwire, SW AWB1210	1oduli 1+1251-15 SY223-SW 2+1251-15 7IRE-GW-D 1+1251-15	591I) 'IRE 589I), PP 590it).
		I manuali sono scaricabili dal sito web Eaton in formato PDF. Per una ricerca rapida, specificare il numero del documento come parola chiave all'indirizzo: http://www.moeller.net/en/support/index.jsp			

Convenzioni di lettura	In questo manuale viene utilizzata la seguente simbologia:
	► mostra istruzioni per l'uso.
\bigtriangledown	Attenzione! segnala il rischio di lievi danni materiali.
$\underline{\land}$	Avvertimento! segnala il rischio di gravi danni materiali e lievi lesioni.
	Pericolo! segnala il rischio di pesanti danni materiali e lesioni gravi o addirittura fatali.
\rightarrow	richiama l'attenzione su interessanti consigli ed informa- zioni aggiuntive

Per maggiore chiarezza, sono riportati a sinistra nell'intestazione il titolo del capitolo, a destra il paragrafo attuale. Fanno eccezione le pagine iniziali e le pagine vuote alla fine del capitolo.

1 Gateway MODBUS-RTU -SWIRE-GW-MB

Il modulo di comunicazione SWIRE-GW-MB è pensato per svolgere funzioni di automatizzazione con il bus di campo MODBUS-RTU. SWIRE-GW-MB funge da gateway tra il sistema di bus di campo MODBUS-RTU e il sistema di connessione SmartWire e può essere utilizzato soltanto insieme a SmartWire. Il gateway MODBUS-RTU funziona sempre come slave modulare sulla rete MODBUS-RTU. **Composizione del sistema** Il sistema di connessione SmartWire è integrato come slave modulare in una rete MODBUS-RTU.

- ① Area master (PLC o PC)
- ② Area slave con il sistema SmartWire

Il gateway SWIRE-GW-MB e i componenti del sistema SmartWire sono apparecchi da incasso. Essi devono essere installati in una custodia, in un quadro elettrico o in un pannello di distribuzione con grado di protezione IP54 o superiore.

Descrizione della funzione II gateway SWIRE-GW-MB consente di collegare il sistema SmartWire a una rete di comunicazione MODBUS-RTU. Il sistema SmartWire può essere formato da una stringa di un massimo di 16 utenti. Come utenti è possibile integrare, per esempio, moduli SmartWire per DILM o moduli I/O Smart-Wire. In generale gli utenti SmartWire possono trasmettere fino a quattro bit di dati di controllo (dati utente in uscita) e un massimo di otto byte di dati di stato (dati utente in ingresso).

7

Gateway MODBUS-RTU -SWIRE-GW-MB

Esempio per moduli SmartWire

Modulo SmartWire per DILM

La seguente figura mostra il modulo SmartWire per DILM.

Figura 3: Struttura modulo SmartWire per DILM

- ① Prese IN e OUT per cavo di collegamento SmartWire
- 2 LED verde
- ③ Indicatore di posizione meccanico
- ④ Connettore ad arresto meccanico
- (5) Spine di collegamento
- 6 Morsetto di collegamento X1-X2
- Passacavi
- (8) Morsetto di collegamento X3-X4

Dati di stato

 Feedback relativo allo stato di commutazione del contattore e feedback relativo allo stato di commutazione del PKZM0 (dati in lettura, visti rispetto al master MODBUS-RTU)

Dati di controllo

 Istruzione di commutazione per il comando ON/OFF del contattore (dati in scrittura, visti rispetto al master MODBUS-RTU)

Modulo I/O SmartWire

La seguente figura mostra il modulo I/O SmartWire.

Figura 4: SWIRE-4DI-2DO-R

- ① IN-connettore per cavo di collegamento SmartWire
- (2) Presa OUT per cavo di collegamento SmartWire
- ③ Morsetti di collegamento uscita relè Q1
- (4) Morsetti di collegamento ingresso I1 e I2
- 5 LED verde
- 6 Morsetti di collegamento ingresso I3 e I4
- Morsetti di collegamento uscita relè Q2

Dati di stato

• Stato degli ingressi digitali (quattro bit) (dati in lettura, visti rispetto al master MODBUS-RTU)

Dati di controllo

• Pilotaggio delle uscite relè del modulo SmartWire (due bit) (dati in scrittura, visti rispetto al master MODBUS-RTU)

2 Installazione

	Qui sotto è descritto co parametri protocollo de	me impostare gli ir 1 MODBUS-RTU.	ndirizzi utente e i	
Impostazione degli indi- rizzi utente e dei para- metri protocollo MODBUS-RTU	Per utilizzare il gateway SWIRE-GW-MB all'interno di una rete MODBUS-RTU, occorre impostare l'indirizzo utente, la parità e la velocità di trasmissione prima della sua messa in funzione. Tali valori si impostano tramite gli interruttori DIP da 2 a 10 situati nella parte inferiore dell'apparecchio			
	L'interruttore DIP 1 nor	n ha alcuna funzion	e.	
	L'indirizzo utente MODBUS-RTU sul SWIRE-GW-MB si imposta mediante gli interruttori DIP da 6 a 10 in formato binario. È possibile pertanto impostare un totale di 32 indi- rizzi da 0 a 31. Gli indirizzi validi per il SWIRE-GW-MB sono gli indirizzi da 1 a 31.			
	La velocità di trasmissione della rete MODBU imposta con gli interruttori DIP 2 e 3.			
Le possibili velocità di trasmission kbit/s, 19,2 kbit/s, 38,4 kbit/s e 5 assegnazioni degli interruttori DII seguito. Tabella 1:Impostaziono della 1		rrasmissione imposi kbit/s e 57,6 kbit/s rruttori DIP sono el one della velocità d	e impostabili sono: 9,6 ,6 kbit/s. Le rispettive sono elencate qui di locità di trasmissione	
Velocità di trasmis- sione [kBit/s]Interruttore DIP 3			Interruttore DIP 2	
	9,6	OFF	OFF	
	19,2	OFF	ON	
	38,4	ON	OFF	
	57,6	ON	ON	

La parità è impostata sugli interruttori DIP 4 e 5. L'impostazione è riportata nella seguente tabella.

Tabella 2: Impostazioni di parità

Numero di bit di stop	Parità	Interruttore DIP 5	Interruttore DIP 4
2	NO	OFF	OFF
1	NO	OFF	ON
1	ODD (DISPARI)	ON	OFF
1	EVEN (PARI)	ON	ON

L'impostazione "nessuna parità" (NO) è impostabile tramite due diverse assegnazioni degli interruttori DIP. La differenza tra le due impostazioni riguarda il numero di bit di stop all'interno di un protocollo.

La seguente figura mostra gli interruttori DIP sul lato inferiore del gateway.

La seguente rappresentazione grafica illustra le assegnazioni degli interruttori DIP del gateway SWIRE-GW-MB al momento della consegna.

Figura 6: Stato al momento della consegna del SWIRE-GW-MB (indirizzo 31, parità pari, un bit di stop, velocità di trasmissione = 57,6 kbit/s)

► Impostare l'indirizzo utente, la parità e la velocità di trasmissione del gateway sull'interruttore DIP (posizione 7) sul lato inferiore dell'apparecchio.

Figura 7: Impostazione dell'indirizzo utente, della parità e della velocità di trasmissione (baud rate)

Connessione del cavo di collegamento SmartWire	Gli utenti del sistema SmartWire vengono collegati con cavi a 6 poli preconfezionati, disponibili in diverse lunghezze. I cavi sono equipaggiato con un connettore su entrambe le estremità.
	 Inserire nella presa OUT il cavo SmartWire a 6 poli nella parte inferiore dell'apparecchio.

	Figura 8: Connessione del SWIRE-GW-MB • Collegare gli altri utenti SmartWire.
\bigvee	Attenzione! La lunghezza complessiva della linea SmartWire non deve superare i 4 m.
Collegamento della tensione di alimentazione	Il gateway SWIRE-GW-MB è alimentato da una tensione a 24 V DC. Inoltre viene fornita una tensione di comando a 24 V DC di alimentazione delle bobine contattore.
	 Collegare il SWIRE-GW-MB tramite i morsetti di collegamento 24 V e 0 V (-gateway-) all'alimentazione di rete a 24 V DC. Ricollegare mediante i morsetti Aux b 24 V e 0 V la tensione ausiliaria 24 V DC per le bobine dei contattori.

I morsetti di collegamento sono adatti a cavi AWG22 -AWG16 e a linee flessibili con sezione compresa tra 0,5 e 1,5 mm². I morsetti di collegamento devono essere serrati a 0,6 Nm.

La protezione del Gateway avviene mediante un fusibile 1 A gG/gL o un interruttore automatico 1 A con caratteristica C. La protezione dell'alimentazione delle bobine del contattore avviene mediante un fusibile 3 A gG/gL o un interruttore automatico 3 A con caratteristica Z.

Pericolo!

Nelle applicazioni di sicurezza, il dispositivo di rete deve essere strutturato per l'alimentazione del sistema SmartWire come dispositivo di rete PELV.

Collegamento del MODBUS-RTU

Il trasferimento dati del gateway MODBUS-RTU SWIRE-GW-MB può basarsi sui due standard di trasmissione RS232 e RS485. A seconda dello standard di trasmissione è necessaria un'assegnazione separata del connettore femmina SUB-D a 9 poli che va collegato alla presa SUB-D a 9 poli del gateway MODBUS-RTU.

Trasmissione mediante RS232

Utilizzando lo standard di trasmissione RS232 lo scambio di dati avviene mediante i contatti 2, 3 e 5 del SWIRE-GW-MB.

Attenzione!

Lo standard di trasmissione RS232 deve essere utilizzato esclusivamente per una connessione punto-punto del SWIRE-GW-MB con un comando con memoria programmabile o un PC.

Attenzione!

Per la comunicazione tramite RS232 utilizzare esclusivamente i collegamenti 2, 3 e 5.

Se si utilizzano linee di trasmissione preconfezionate che usano i collegamenti 6, 8 e 9, il SWIRE-GW-MB e/o la controparte di comunicazione utilizzata si possono rovinare.

Funzioni terminali RS232 del SWIRE-GW-MB

Figura 10: Collegamento ai terminali RS232

La seguente tabella mostra i segnali nel SWIRE-GW-MB.

Tabella 3:	Segnali SWIRE-GW-MB
------------	---------------------

Pin	Nome segnale	Designazione
		-
1	non utilizzato	-
2	RxD out	Linea di trasmissione RS232
3	TxD in	Linea di ricezione RS232
4	Non utilizzato	-
5	GND	Potenziale di riferimento
6	+ 5V	+ 5V, con separazione galvanica
7	non utilizzato	-
8	Rx/Tx – (linea A)	Dati di ricezione/trasmissione N RS485
9	Rx/Tx + (linea B)	Dati di ricezione/trasmissione P RS485

Trasmissione tramite RS485

Con lo standard di trasmissione RS485 si utilizzano i collegamenti di contatto 5, 6, 8 e 9 del SWIRE-GW-MB. Le rispettive funzioni Pin e le numerazioni del connettore a 9 poli SUB-D sono riportate nella seguente tabella 4.

Attenzione!

Per la comunicazione tramite RS485 è possibile utilizzare soltanto i collegamenti 5, 6, 8 e 9. Se si utilizzano linee di trasmissione preconfezionate che usano i collegamenti 2 e 3, il SWIRE-GW-MB e/o la controparte di comunicazione utilizzata si possono rovinare.

Funzioni terminali RS485 del SWIRE-GW-MB

Tabella 4:	Segnali SWIRE-GW-MB
------------	---------------------

Pin	Nome segnale	Designazione
1	non utilizzato	-
2	RXD OUT	Linea di trasmissione RS232
3	TxD in	Linea di ricezione RS232
4	non utilizzato	-
5	GND	Potenziale di riferimento -
6	+ 5V	+ 5V, con separazione galva- nica
7	non utilizzato	-
8	Rx/Tx – (linea A)	Dati di ricezione/trasmissione N RS485
9	Rx/Tx + (linea B)	Dati di ricezione/trasmissione P RS485

Per lo scambio di dati sono sufficienti i collegamenti 8, 9 e lo schermo

 Collegare il connettore SUB-D a 9 poli del cavo di trasmissione alla presa SUB-D.

Il tipo di cavo influisce sulla lunghezza disponibile della linea bus e quindi sulla velocità di trasmissione (-> paragrafo "Lunghezze massime di linea", pagina 21).

Resistenze di termina- zione	Se si impiega lo standard di trasmissione RS485, il primo e l'ultimo utente di un segmento di bus di campo MODBUS- RTU devono terminare con la resistenza di terminazione inserita. La resistenza di terminazione del bus viene attivata esternamente. Questa attivazione esterna può avvenire o come resistenza di terminazione separata o tramite uno speciale connettore SUB-D con collegamento bus integrato. La resistenza di terminazione è collegata a entrambe le linee di segnale RxD/TX- (linea A) e Rx/Tx+ (linea B). Il valore della resistenza di terminazione deve essere pari a 150 Ω (0,5 W).
Cablaggio della rete a norma EMC	Eventuali influssi elettromagnetici del bus di campo possono provocare disturbi indesiderati in determinate circostanze. Esse i possono limitare preventivamente tramite adeguate misure di compatibilità elettromagnetica. Esse compren- dono:
	 Configurazione di sistema dell'impianto a norma EMC. Gestione linea rispondente alla compatibilità elettromagnetica Impedire grosse differenze di potenziale Corretta istallazione del sistema MODBUS (cavo, Collegamento del connettore bus ecc.)
	L'influsso elettromagnetico può essere notevolmente ridotto montando uno schermo. Le seguenti figure illustrano la corretta installazione della schermatura.

Installazione

Figura 12: Schermatura della linea di rete

Attenzione!

Lo schermo non deve essere attraversato da correnti di compensazione. Per questo deve essere predisposto un sistema sicuro per la compensazione di potenziale.

Separazione galvanica	Per le interfacce di SWIRE-GW-MB valgono le seguenti sepa- razioni galvaniche:				
	 Separazione galvanica d alimentazione e verso il 	el MODBUS-RTU dalle tensioni di sistema SmartWire.			
	 Nessuna separazione tra Gateway e la tensione di attuatori. 	 Nessuna separazione tra la tensione di alimentazione Gateway e la tensione di alimentazione per le bobine degli attuatori. 			
	 Nessuna separazione tra sistema SmartWire. 	le tensioni di alimentazione ed il			
Lunghezze massime di linea	Per le linee bus sono fissato standard di trasmissione u	e lunghezze massime in base allo tilizzato (RS485 o RS232).			
	 RS485 La lunghezza massima di linea con lo standard RS485 dipende dalla sezione delle linee dati utilizzate. La lunghezza massima di linea di 1000 m è garantita da una sezione del conduttore maggiore o uguale a 0,25 mm² (AWG24). Utilizzando linee dati di categoria 5 è possibile ottenere linee lunghe fino a 600 m. RS232 Per lo standard RS232 sono fissate le seguenti\$ lunghezze massime con una capacità massima del cavo pari a 2500 pF. Tabella 5: Max. lunghezze di linea con lo standard RS232 				
	Baudrate [kBit/s] max. lunghezza linea [m]				
	9,6	152			
	19,2	15			
	38,4	7,5			
	57,6	5			

3 Messa in servizio

	Questo capitolo descrive come mettere in funzione il gateway.
	Prima di procedere con l'attivazione, verificare che siano correttamente collegate le tensioni di alimentazioni per il Gateway e le bobine degli attuatori, la connessione bus ed il sistema SmartWire.
Prima inserzione	 Verificare se l'indirizzo MODBUS-RTU del gateway, la parità e la velocità di trasmissione della rete MODBUS-RTU sono impostate correttamente sull'interruttore DIP per l'applicazione in questione. Inserire le tensioni di alimentazione per i contattori e il gateway. I LED del gateway ora mostrano i seguenti stati:
	 II LED Ready del SWIRE-GW-MB lampeggia. II LED U-Aux del SWIRE-GW-MB è acceso staticamente (ON). II LED MODBUS-RTU è spento (nessuna comunicazione tramite MODBUS-RTU). II LED SmartWire lampeggia (poiché gli utenti SmartWire non sono ancora stati configurati). Sul primo modulo SmartWire il LED Ready lampeggia. In tutti gli altri moduli SmartWire il LED Ready lampeggia a impulsi.
	 ▶ Premere il tasto di configurazione sul gateway e tenerlo premuto per circa due secondi finché il LEDReady passa da un lampeggiamento lento al lampeggiamento rapido. La configurazione reale del sistema SmartWire, ovvero tutti i moduli SmartWire uniti e collegati ora vengono trasferiti automaticamente al gateway. Agli utenti SmartWire vengono assegnati indirizzi in sequenza ascendente completa a partire da 1. Dopo la corretta acquisizione della configurazione da parte del sistema SmartWire il LED di stato

Messa in servizio

SWIRE che lampeggia lentamente sul gateway MODBUS-RTU e i LED Ready del modulo SmartWire passano allo stato ON statico. In tal modo, tramite il sistema SmartWire, la configurazione hardware memorizzata viene continuamente confrontata con l'attuale configurazione. Se il sistema trova delle divergenze, lo segnala tramite i LED SmartWire a lampeggiamento lento (-> paragrafo "Ricerca errori", pagina 53).

Commutare il master MODBUS-RTU su "run". Non appena il gateway è inserito nel bus di campo MODBUS-RTU, i dati ricevuti e inviati sono segnalati dalla luce gialla lampeggiante/permanentemente accesa del LED MODBUS-RTU sul SWIRE-GW-MB.

Significato dei LED di
statoIl gateway SWIRE-GW-MB comprende quattro LED di stato.
Essi sono di colore verde (LED UAUX, Ready e SmartWire) e
giallo (LED MODBUS-RTU).

1
2

LED Ready

1	Luce perma- nente	Tensione di alimentazione presente, comunicazione tramite MODBUS
		attiva.
2	OFF	Mancanza di tensione di alimenta-
		zione per il gateway e gli utenti Smart-
		Wire o errore interno al gateway.
3	lampeggiante	Nuova configurazione attivata
-	veloce	mediante il tasto di configurazione
4	lampeggiante	La comunicazione MODBUS non
	lentamente	funziona

U-Aux-LED

1	Luce perma-	La tensione di alimentazione per le
	nente	bobine contattore è presente.
2	OFF	Tensione di alimentazione assente

Timeout del timer MODBUS

LED SmartWire

Luce perma- nente	Il sistema SmartWire è perfettamente funzionante.
OFF	Tensione di alimentazione assente dal gateway MODBUS.
lampeggiante veloce	Errore di trasmissione nel sistema SmartWire
lampeggiante lentamente	Errore di configurazione del sistema SmartWire: la configurazione di riferi- mento e reale non corrispondono.

LED MODBUS-RTU

	1	Luce perma- nente	La comunicazione MODBUS funziona (i dati di controllo vengono trasmessi).
			Il Watchdog-Timer funziona.
(2)	2	OFF	Tensione di alimentazione assente;
	-		nessuna trasmissione dati mediante
			MODBUS-RTU

4 Funzionamento tramite MODBUS-RTU

Integrazione nella confi- gurazione bus di campo	Eseguire le seguenti operazioni per configurare il master MODBUS-RTU generale.
	 Inserire un modulo funzionale per un master MODBUS- RTU nella configurazione di comando dell'unità di comando utilizzata.
	 Assegnare a questo modulo funzionale la porta di comu- nicazione utilizzata per la comunicazione MODBUS-RTU.
	Impostare i parametri desiderati della rete MODBUS sul modulo funzionale del master MODBUS-RTU. Fare atten- zione ai parametri del gateway MODBUS-RTU (baud rate, parità, numero di bit di stop, indirizzo).
	► Fissare le dimensioni delle aree di registro della rete MODBUS. Considerare in tal caso i dati da trasmettere.
	Il gateway MODBUS SWIRE-GW-MB dispone di un Watchdog-Timer impostabile interno (vedere paragrafo "Impostare il Watchdog-Timer", pagina 43) che in caso di comunicazione MODBUS assente genera uno stato di errore nel gateway. Per evitare eventuali timeout, i dati di controllo del SWIRE-GW-MB devono essere scritti ciclicamente.

Raffigurazione dati degli utenti SmartWire	All'interno di un apparecchio MODBUS-RTU sono memoriz- zati i dati del livello di ingresso e di uscita in diversi registri (registro input, holding register).
	Nel caso del gateway MODBUS-RTU i dati di stato e di controllo degli utenti SmartWire collegati sono memorizzati nell'holding register del SWIRE-GW-MB. L'holding register del SWIRE-GW-MB contiene i seguenti dati:
	 Dati di stato (dati in ingresso) degli utenti SmartWire Dati di controllo (dati in uscita) degli utenti SmartWire Check bit degli utenti SmartWire Identificativo apparecchi e produttori degli utenti Smart-Wire Lifebit degli utenti SmartWire
	 Numero utenti SmartWire collegati Valore temporale del timer MODBUS interno

Funzionamento tramite

I dati sono memorizzati nei registri nel modo seguente:

Designazione	Area registro	Larghezza dati:	Rappresentazione
Dati di controllo abbreviati	40001 - 40002	4 byte	2 byte per utenti SmartWire
Dati di controllo completi	40003 - 40006	8 byte	4 byte per utenti SmartWire
Dati di stato 1 abbreviati	40007 - 40008	4 byte	2 byte per utenti SmartWire
Check bit	40009	2 byte	1 byte per utenti SmartWire
Dati di stato 2 abbreviati	40010 - 40013	8 byte	4 byte per utenti SmartWire
Dati di stato completi	40014 - 40077	128 byte	8 byte per utenti SmartWire
Lifebit	40078	2 byte	1 byte per utenti SmartWire
Identificativo utente	40079 - 40142	128 byte	8 byte per utenti SmartWire

Tabella 6:	Raffigurazione	dati nel	SWIRE-GW-MB
------------	----------------	----------	-------------

Designazione	Area registro	Larghezza dati:	Rappresentazione
Numero utenti SmartWire	40143	2 byte	Rappresentazione binario
Watchdog-Timer (volatile)	44097	2 byte	Low byte: Tempo = valore \times 10 ms High byte: non utilizzato
Watchdog-Timer (permanente)	44098	2 byte	Low byte: Tempo = valore \times 10 ms High byte: non utilizzato

Rappresentazione dei dati

La rappresentazione dei dati nel gateway MODBUS-RTU corrisponde sempre all'ordinamento fisico degli utenti SmartWire. I primi bit di dati di un'area di registro sono rappresentati dai primi utenti SmartWire oltre al gateway MODBUS-RTU.

La successiva rappresentazione spiega questo aspetto prendendo ad esempio l'area dei dati di stato 1 abbreviati (area di registro da 40007 a 40008).

Funzionamento tramite MODBUS-RTU

Area registro	Bit n°.	Contenuto dei dati	N° di utenti SmartWire
40007	0 (LSB) ¹⁾	1 bit di stato	1 utenti
	1	2 bit di stato	1 utenti
	2	1 bit di stato	Utente 2
	3	2 bit di stato	Utente 2
	4	1 bit di stato	3 utenti
	5	2 bit di stato	3 utenti
	14	1 bit di stato	8 utenti
	15 (MSB) ²⁾	2 bit di stato	8 utenti
40008	0 (LSB) ¹⁾	1 bit di stato	9 utenti
	1	2 bit di stato	9 utenti
	2	1 bit di stato	10 utenti
	3	2 bit di stato	10 utenti
	4	1 bit di stato	11 utenti
	5	2 bit di stato	11 utenti
	14	1 bit di stato	16 utenti
	15 (MSB) ²⁾	2 bit di stato	16 utenti

Tabella 7: Disposizione dei contenuti dei registri

1) LSB = Least Significant Bit,

2) MSB = Most Significant Bit

Rappresentazione abbreviata e completa dei bit

A seconda dell'area dati del registro, i dati di stato (dati in ingresso degli utenti SmartWire) e di controllo (dati in uscita degli utenti SmartWire) sono rappresentati in modo abbreviato o completo.

Le rappresentazioni abbreviate contengono soltanto i primi bit di stato/controllo dell'utente SmartWire in questione. Gli utenti SmartWire che dispongono di un maggior numero di bit di stato/controllo di quanto consenta la singola rappresentazione non vengono visualizzati completamente al suo interno. Se si sceglie la rappresentazione completa, sarà visualizzato il contenuto completo dei dati dell'utente Smart-Wire. A seconda degli utenti SmartWire, la rappresentazione conterrà campi di bit inutilizzati ulteriormente trasmessi tramite MODBUS-RTU.

Il seguente esempio illustra la rappresentazione abbreviata dei dati di stato e di controllo relativi agli utenti SWIRE-DIL e SWIRE-4DI-2DO-R.

Esempio:

Dati di stato e di controllo di SWIRE-DIL e di SWIRE-4DI-2DO-R

Il SWIRE-DIL dispone dei seguenti dati di stato e di controllo

Tabella 8:Dati di controllo (scrittura dal punto di vista del
MODBUS-RTU master)

SWIRE-DIL	Bit 3	Bit 2	Bit 1	Bit 0
Comando contattore				0/1

I valori 0 e 1 hanno il seguente significato (tabella 9):

|--|

Valore	Significato
0	Disinserire il contattore
1	Inserire il contattore

Tabella 10: Dati di stato (lettura dal punto di vista del MODBUS-RTU)

SWIRE-DIL	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Stato contattore								0/1
Stato PKZ							0/1	
Bt di stato SWIRE-DIL	0/1							

I valori 0 e 1 hanno il seguente significato (tabella 11):

Valore	Stato contattore	Stato PKZ	Bt di stato SWIRE-DIL
0	OFF	OFF	ОК
1	ON	ON	Errore

Tabella 11: Definizione dei bit

Il SWIRE-4DI-2DO-R dispone dei seguenti dati di stato e di controllo:

Tabella 12: Dati di controllo (scrittura dal punto di vista del MODBUS-RTU master)

SWIRE-DIL	Bit 3	Bit 2	Bit 1	Bit 0
Comando uscita Q1				0/1
Comando uscita Q2			0/1	

I valori 0 e 1 hanno il seguente significato (tabella 13):

Tabella 13: Definizione dei bit

Valore	Significato
0	Disinserire i relè
1	Inserire i relè

-

SWIRE-4DI-2DO-R	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Stato ingresso I1								0/1
Stato ingresso I2							0/1	
Stato ingresso I3						0/1		
Stato ingresso I4					0/1			
Bit di stato SWIRE-4DI-2DO-R	0/1							

Tabella 14:Dati di stato (lettura dal punto di vista del
master MODBUS-RTU)

I valori 0 e 1 hanno il seguente significato (tabella 15):

Tabella 15: Definizione dei bit

	Stato ingresso	Bit di stato SWIRE-4DI-2DO-R
0	Ingresso 0	ОК
1	Ingresso 1	Errore

I dati di stato e di controllo sono visualizzati a seconda dell'area di registro selezionata nelle diverse rappresentazioni.

Per i dati di stato è possibile scegliere due diverse rappresentazioni abbreviate:

- dati di stato abbreviati 1: due bit per utente SmartWire, area di registro 40007 40008
- dati di stato abbreviati 2: quattro bit per utente SmartWire, area di registro 40010 - 40013

I dati di controllo abbreviati sono raffigurati soltanto in una rappresentazione (area di registro 40001 - 40002) e contengono due bit per utente SmartWire. La seguente illustrazione spiega quali dati di stato e di controllo sono contenuti nelle varie rappresentazioni abbreviate.

Raffigurazione dati degli utenti SmartWire

Registro	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
40001	S8	58	S7	S7	S6	S6	S5	S5	S4	S4	S3	S3	S2	S2	S1	S1
	Q2	Q1														
40002	S16	S16	S15	S15	S14	S14	S13	S13	S12	S12	S11	S11	S10	S10	S9	S9
	Q2	Q1														
40007	S8	S8	S7	S7	S6	S6	S5	S5	S4	S4	S3	S3	S2	S2	S1	S1
	12	11	12	11	12	11	12	11	12	I1	12	11	12	11	12	11
40008	S16	S16	S15	S15	S14	S14	S13	S13	S12	S12	S11	S11	S10	S10	S9	S9
	I2	I1	12	I1												
40010	54	54	S4	S4	53	S3	S3	S3	S2	S2	S2	S2	S1	S1	S1	S1
	14	13	12	I1	14	13	12	11	14	13	12	11	14	13	12	11
40011	58	58	58	58	57	57	S7	S7	S6	S6	S6	S6	S5	S5	S5	S5
	14	13	12	11	14	13	12	11	14	13	12	11	14	13	12	11
40012	S12	S12	S12	S12	S11	S11	S11	S11	S10	S10	S10	S10	S9	S9	S9	S9
	I4	I3	I2	I1	I4	I3	I2	I1	I4	I3	I2	I1	14	I3	12	11
40013	S16	S16	S16	S16	S15	S15	S15	S15	S14	S14	S14	S14	S13	S13	S13	S13
	I4	I3	I2	I1												

Tabella 16:	Rappresentazione dei registri, dati di stato e di
	controllo abbreviati

 $Sx = n^{\circ}$ dell'utente SWIRE, Qy = bit di controllo y dell'utente x, Iy = bit di stato y dell'utente x

Tabella 17: Rappresentazioni abbreviate dei dati di stato e di controllo

Utenti SmartWire	Dati di controllo abbre- viati (40001 - 40002)		Dati di stato) abbreviati (4	0010 - 400 ⁻	13)
			Dati di stat viati - (400	o abbre- 07 - 40008)		
	Bit 0	Bit 1	Bit 0	Bit 1	Bit 2	Bit 3
SWIRE-DIL	Comando contattore		Stato contattore	Stato PKZ		
SWIRE-4DI-2DO-R	Uscita Q1	Uscita Q2	Ingresso I1	Ingresso I2	Ingresso I3	Ingresso I4

Nella rappresentazione completa sono contenuti tutti i bit di stato e di controllo dell'utente SmartWire in questione. I dati di controllo completi utilizzano per ogni utente SmartWire quattro bit dell'area di registro 40003 - 40006. I dati di stato completi utilizzano ciascuno otto byte per utente SmartWire all'interno dell'area di registro 40014 - 40077. La suddivisione dei byte dei dati di stato di un utente SmartWire all'interno dell'area di registro 40014 - 40077. La seguente.

Tabella 18: Byte di stato per l'area di registro 40014 - 40017

Registro	High byte
40014	Low byte byte dati di stato 2
	High byte byte dati di stato 1
40015	Low byte byte dati di stato 4
	High byte byte dati di stato 3
40016	Low byte byte dati di stato 6
	High byte byte dati di stato 5
40017	Low byte byte dati di stato 8
	High byte byte dati di stato 7

La seguente rappresentazione illustra il contenuto dei dati di questo registro in un SWIRE-4DI-2DO-R.

Regi- stro		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
40014	Low byte	-	-	-	-	-	-	-	-
	High byte	Stato SWIRE- 4DI-2DO-R	-	-	-	Ingresso I4	Ingresso 13	Ingresso 12	Ingresso I1
40015	Low byte	-	-	-	-	-	-	-	-
	High byte	-	-	-	-	-	-	-	-
40016	Low byte	-	-	-	-	-	-	-	-
	High byte	-	-	-	-	-	-	-	-
40017	Low byte	-	-	-	-	-	-	-	-
	High byte	-	-	-	-	-	-	-	-

Tabella 19:Dati di stato SWIRE-4DI-2DO-R, area di registro
40014 - 40017

La scelta tra una rappresentazione abbreviata e una completa dei dati dipende dal tipo di utente SmartWire. Una rappresentazione abbreviata è possibile per gli utenti SmartWire in caso di un basso numero di bit di stato e di controllo perché in tal modo il numero di campi di bit inutilizzati nel protocollo MODBUS-RTU diminuisce. Le rappresentazioni complete sono possibili nel caso di utenti SmartWire con un alto numero di dati di stato e/o di controllo.

Aree dati di controllo

I dati di controllo (dati in uscita) degli utenti SmartWire sono memorizzati in due diverse aree di registro. Entrambe le aree di registro hanno una diversa rappresentazione (rappresentazione abbreviata: due bit di controllo per ogni utente SmartWire, area di registro da 40001 a 40002, rappresentazione completa: quattro bit di controllo per ogni utente SmartWire, area di registro da 40003 a 40006). L'utilizzo di entrambe le aree dati non è supportato da parte del gateway MODBUS-RTU perché ciò può creare un'incoerenza tra i dati di controllo memorizzati in entrambe le aree di registro. Lo scambio tra le due aree dati di stato è possibile soltanto disinserendo e reinserendo il gateway MODBUS-RTU.

Check bit

L'area di registro dei check bit serve a stabilire se un utente SmartWire è inattivo o se si trova in uno stato di errore interno. Ogni utente SmartWire dispone di un check bit. La disposizione dei check bit all'interno dell'area di registro si basa sulla disposizione fisica degli utenti SmartWire. I check bit sono definiti nel seguente modo:

Tabella 20: Definizione dei check bit

Check bit	Stato dell'utente SmartWire
0	L'utente è disponibile e funziona senza errori
1	L'utente è guasto o è difettoso.

Ogni check bit rappresenta un collegamento OR logico di bit di stato o lifebit dell'utente SmartWire in questione. Perciò i check bit contengono le informazioni diagnostiche essenziali relative agli utenti SmartWire che rendono superflue eventuali ulteriori valutazioni dei bit di stato e dei lifebit.

Lifebit

L'area registro 40078 serve a valutare gli utenti SmartWire presenti o guasti. Ogni utente SmartWire comprende un apposito lifebit all'interno dell'area registro 40078. La disposizione dei lifebit all'interno delle aree registro è analoga a quella delle aree precedenti e si basa sulla disposizione fisica degli utenti SmartWire. I lifebit sono definiti nel seguente modo:

Tabella 21: Definizione dei lifebit

Lifebit	Stato di comunicazione dell'utente SmartWire
0	L'utente dello SmartWire è guasto.
1	L'utente è presente sullo SmartWire e comunica senza problemi.

Bit di stato

I bit di stato vengono inviati da ogni utente SmartWire al gateway MODBUS-RTU. Il contenuto dei bit di stato segnala se un utente SmartWire funziona correttamente o se si trova in uno stato di errore. Il bit di stato di ogni utente è riportato esclusivamente nella rappresentazione completa dei bit di stato (area di registro 40014 - 40077). All'interno di questa area il bit di stato occupa il bit di stato più alto del byte dati di stato più basso dell'utente in questione. I bit di stato sono definiti nel seguente modo:

Tabella 22: Definizione dei bit di stato

Bit di stato	Stato dell'utente SmartWire
0	ОК
1	Errore

Identificativo produttore e apparecchio degli utenti SmartWire

Tramite il campo dati dell'identificativo produttore e apparecchio (area di registro 40079 - 40142) è possibile leggere la disposizione riconosciuta dal gateway dei tipi di apparecchio SmartWire, nonché le loro versioni hardware e software tramite il MODBUS-RTU. Ogni utente SmartWire occupa otto byte all'interno dell'area registro per l'identificativo produttore e apparecchio. I byte contengono le seguenti informazioni.

 Tabella 23:
 Identificativo produttore e apparecchio di un utente SmartWire

Byte dati	Significato	Campo valori	Nota
1	Indirizzo nodo	0x01 - 0x10	Indirizzo nodo da 1 a 16 dell'utente nel sistema Smar- tWire
2	Tipo di slave/identificativo apparecchio	0x00 - 0xFF	Tipo di slave (bit 7), identificativo apparecchio (bit da 0 a 6)
3	Versione hardware	0x00 - 0xFF	Versione hardware dell'utente
4	Versione software	0x00 - 0xFF	Livello software dell'utente
5	CFG-byte	0x00 - 0xFF	Configuration Identifier
6	inutilizzato	0x00 - 0xFF	non utilizzato
7	Tempo di lifeguarding	0x00 - 0xFF	Tempo di lifeguarding del sistema SmartWire (valore × 10 ms)
8	Identificativo produttore	0x00 - 0xFF	0 = nessun identificativo 1 = Eaton 2 - 255 = libero, può ancora essere occupato

Identificativo apparecchio

Nell'identificativo apparecchio dell'utente SmartWire (byte dati 2) si distinguono i seguenti elementi:

Tabella 24: Codifica dei tipi di apparecchio

Bit dati da 0 a 6	Tipo di apparecchio
0x20	SWIRE-DIL
0x21	SWIRE-4DI-2DO-R

Versione hardware e software

Gli identificativi delle versioni hardware e software (byte dati 3 o 4) sono indicati da un numero decimale (es. versione 1.5). Il rispettivo byte di dati è suddiviso nei due indici per le cifre prima e dopo la virgola. La suddivisione dei bit di dati è la seguente:

 Tabella 25:
 Suddivisione per identificativo hardware e software

Byte dati 3 e 4	Identificativo hardware/software
Bit 0 - 3	Cifra decimale dopo la virgola
Bit 4 - 7	Cifra decimale prima della virgola

La funzione di identificativo della versione hardware e software non è supportata da tutti i tipi di apparecchio SmartWire.

CFG-byte

La descrizione dei dati di stato dell'utente SmartWire si ottiene tramite i byte CFG (byte dati 5). Il byte CFG contiene la descrizione del numero di byte dati di stato di cui dispone l'utente SmartWire e del formato in cui sono memorizzati. Il byte CFG è strutturato nel seguente modo:

Bit	Significato	Campo valori
0 (LSB) ¹⁾	Lunghezza dei dati di stato	00 = 1 byte (una word)
1		01 = 2 byte (due word) 02 = 3 byte (tre word)
2		03 = 4 byte (quattro word)
3		04 = 5 byte 05 = 6 byte
		06 = 7 byte
		07 = 8 byte
4	Tipo di dati di stato	00 = nessun dato di stato
5		01 = dati in ingresso
6	Struttura dati	0 = struttura byte
		1 = struttura word
7 (MSB) ²⁾	Coerenza dei dati	0 = coerenza in base a byte o word 1 = coerenza in base all'intera lunghezza

Tabella 26: Struttura del byte CFG

1) LSB = Least Significant Bit,

2) MSB = Most Significant Bit

La lunghezza dei dati di stato è descritta dai bit dati da 0 a 3 del byte CFG. Un utente SmartWire può possedere fino a otto byte di dati di stato in totale. Essi sono memorizzati nell'utente in una struttura byte (8 byte di stato) o in una struttura word (quattro word dati). La struttura dei dati di stato (word o struttura byte) è espressa dal bit 6.

L'area registro dedicata all'identificativo produttore e apparecchio è descritta una volta nell'inizializzazione del SWIRE-GW-MB. Gli utenti SmartWire guasti rimangono in questa rappresentazione e saranno eliminati da essa soltanto al successivo avvio di SWIRE-GW-MB.

Numero utenti SmartWire

Il numero di tipi di apparecchio collegati allo SmartWire è contenuto all'interno dell'area registro 40143. Per ogni gateway sono possibili 16 utenti SmartWire al massimo.

L'area registro relativa al numero di utenti SmartWire è descritta una sola volta nell'inizializzazione del SWIRE-GW-MB. Gli utenti SmartWire guasti rimangono in questa rappresentazione e sono visualizzati soltanto al successivo avviamento del SWIRE-GW-MB.

Impostare il Watchdog-Timer

Il gateway MODBUS-RTU dispone di un Watchdog-Timer interno che monitora lo scambio di dati della rete MODBUS-RTU. Il Watchdog-Timer monitora la differenza temporale tra due processi di scrittura dei dati di controllo. Se tale differenza temporale oltrepassa il valore impostato del Watchdog-Timer, esso genera una condizione di errore interno sul SWIRE-GW-MB. All'interno di questa condizione di errore tutti i dati di controllo degli utenti SmartWire vengono cancellati (0 logico). Lo stato dei dati di controllo (0 logico) perdura finché essi non vengono reimpostati da una nuova istruzione di scrittura.

Il valore temporale del Watchdog-Timer è impostabile tramite due aree registro (44097 e 44098). I valori temporali validi vengono scritti esclusivamente nel byte di valore inferiore del registro in questione. La base temporale del Watchdog-Timer è pari a 10 ms. Come differenza temporale è possibile impostare valori da 10 a 2550 ms.

All'interno dell'area registro 44097 la differenza temporale impostata viene memorizzata in modo volatile. In caso di interruzione della tensione di alimentazione (U_{Gateway}) questi dati vengono cancellati. Anche i dati scritti nell'area di memoria volatile (area registro 44097) del SWIRE-GW-MB, sono copiati nell'area registro 44098 e sono disponibili sotto forma di informazioni di lettura.

Funzionamento tramite MODBUS-RTU	07/09 MN034070022
	All'interno dell'area registro 44098 viene memorizzata la differenza temporale impostata in modo permanente, restando memorizzata anche dopo un'interruzione della tensione. Il valore standard dell'area di memoria perma- nente è pari a 100 ms.

Possibilità di accesso alle aree di registro I dati degli utenti SmartWire sono rappresentati nell'holding register del SWIRE-GW-MB. In generale le istruzioni di lettura e di scrittura sono consentiti nell'area holding register. Per alcune aree dati (per es. dati di stato degli utenti SmartWire) sono ammissibili soltanto istruzioni di lettura. Alle istruzioni di scrittura in aree accessibili soltanto in lettura il gateway MODBUS-RTU risponde con un codice di errore.

Designazione	Area registro	Possibilità di accesso
Dati di controllo abbreviati	40001 - 40002	Accesso con diritto di scrit- tura/lettura
Dati di controllo completi	40003 - 40006	Accesso con diritto di scrit- tura/lettura
Dati di stato abbreviati 1	40007 - 40008	Accesso con diritto di lettura
Check bit	40009	Accesso con diritto di lettura
Dati di stato abbreviati 2	40010 - 40013	Accesso con diritto di lettura
Dati di stato completi	40014 - 40077	Accesso con diritto di lettura
Lifebit	40078	Accesso con diritto di lettura
Identificativo produttore e apparecchio	40079 - 40142	Accesso con diritto di lettura
Numero di utenti SmartWire	40143	Accesso con diritto di lettura
Timer MODBUS (volatile)	44097	Accesso con diritto di scrit- tura/lettura
Timer MODBUS (permanente)	44098	Accesso con diritto di scrit- tura/lettura

Tabella 27: Possibilità di accesso alle aree registro

MODBUS-funzioni	Di seguito sono descritti la struttura di un telegramma
	MODBUS e le funzioni MODBUS.

Struttura di un telegramma MODBUS

Il sistema di comunicazione MODBUS-RTU si basa sul principio master/slave. Questo significa che il MODBUS master invia un telegramma di richiesta al MODBUS slave. Se non riscontra errori, il MODBUS slave risponde ad esso con un telegramma di risposta. Il formato del telegramma MODBUS è identico per i messaggi Request e i messaggi Response.

$ID \qquad FC \qquad B_0 \qquad \dots \qquad M_n \qquad CRC_{low} \qquad CRC_{high}$
--

F' 40

Figura 13:	Struttura di un telegramma MODBOS	

Indirizzo slave (ID)	Indirizzo del MODBUS slave. Un messaggio Broadcast (Request a tutti i MODBUS slave) contiene il valore 0 come indirizzo slave.
Codice di funzione (FC)	Istruzione del MODBUS master che deve essere eseguita dal MODBUS slave. I codici funzione non supportati contengono, nel messaggio Response del MODBUS slave, il codice funzione del messaggio request aumentato di 128 (0x80).
Byte di dati (B ₀ - B _n)	Campo dati utili In caso di istruzioni di lettura questo campo contiene il contenuto delle aree di registro richiamate nella risposta del MODBUS slave. In caso di istruzioni di scrittura questo campo contiene il contenuto del registro da descrivere nel messaggio Request del MODBUS master.
Check-sum (CRC _{low} , CRC _{high})	Contiene il valore della check sum. La check sum è formata da tutti i precedenti byte telegramma (IDB _n) con il procedimento CRC-16. La check sum si calcola nel seguente modo: CRC-16 = ((IDB _n) × 0x100000) mod 0x18005

Istruzioni di scrittura

Write Single Register (0x06) Telegramma Request

ID 0x06 REG _{high} REG _{low} D _{high} D _{low} CRC _{low,req} CRC _{high,re}	w,req CRChigh,req
---	-------------------

Telegramma Response

ID	0x06	REG _{high}	REGlow	D _{high}	D _{low}	CRC _{low,res}	CRC _{high,res}
			0x06	Write Single registro di so	Register — [crittura/lettu	Descrizione di ι ra	ın singolo
		-	REG	Indirizzo del (Registro = i	registro da ndirizzo reg	descrivere istro-40001; "ı	meno")
		-	D	Byte dati per	r la descrizio	one del registro	

Check sum del telegramma Request

Check sum del telegramma Response

CRC_{req}

CRC_{res}

Write multiple	Register (0x16)
Telegramma	Request

ID	0x10	REG _{high}	REGlow	N _{high}	I	Nlow		В	D _{1,high}	
					D _{high}		Dlov	v	CRC _{low,req}	CRC _{high,req}
			Teleg	ramı	ma R	espon	se			
ID	0x10	REG _{high}	REGlow	,	N _{high}		Nlov	v	CRC _{low,res}	CRC _{high,res}
			0x10	V r	Vrite N egistri	Aultiple di scrit	e Reg tura	gister — De /lettura	escrizione di	uno o più
			REG		ndirizz registr	o del re o = ind	egist lirizz	ro più bas o registro	so da descr -40001)	ivere
			N		lumer	o dei re	gist	ri da desci	rivere	
			B Numero di byte dati da scrivere (D _{1,high} - D _{n,low})							
			D	E V P	Byte da /iene d biù bas	ati con i descritto sso.	qua c pe	li devono r primo il	essere descr registro con	itti i registri. I'indirizzo
			CRC _{req}	C	Check	sum de	l tel	egramma	Request	
			CRC _{res}	C	Check	sum de	l tel	egramma	Response	

Istruzioni di lettura

Read Holding Register (0x03) Telegramma Request

ID	0x03	REG _{high}	REGlow	N _{high}	N _{low}	CRC _{low,req}	CRC _{high,req}
----	------	---------------------	--------	-------------------	------------------	------------------------	-------------------------

Telegramma Response

ID	0x10	REGhigh	REGlow	D _{n,high}		D _{n,low}	CRC _{low,res}	CRC _{high,res}
			0x03	Read H	lolding Reg	ister		
			REG	Indirizz (registi	zo del regist ro = indirizz	tro più bass to registro-4	o che deve 10001)	essere letto
			Ν	Numer	o di registri	da leggere		
			D Contenuto dei registri da leggere. Vier primo il registro che possiede l'indirizz		jere. Viene l'indirizzo p	letto per più basso.		
			CRC _{req}	Check	sum del tel	egramma R	equest	
			CRC _{res}	Check	sum del tel	egramma R	esponse	

Funzioni di diagnosi di	Le funzioni di diagnosi servono per la verifica della comuni-
MODBUS (0x08)	cazione MODBUS-RTU. L'utilizzo di queste funzioni avviene
	tramite un codice funzione separato (0x08). Tramite ulteriori
	sub-codici funzione è possibile impiegare diversi codici
	funzione diagnostici che servono a testare la comunicazione.
	La struttura del telegramma MODBUS per funzioni di
	diagnosi è la seguente:

Telegramma Request

ID 0x08 FC _{high} FC _{low}	D _{high,req} D _{low,req}	CRC _{low,req} CRC _{high,req}
--	--	--

Telegramma Response

ID	0x08	FC _{high}	FClow	D _{high,res}	D _{low,res}	CRC _{low,res}	CRC _{high,res}

0x08	Diagnosi
FC	Codice funzione della funzione di diagnosi
D _{req}	Campo dati del telegramma Request che può conte- nere ulteriori parametri della funzione di diagnosi
D _{res}	Campo dati del telegramma Response che può contenere i valori restituiti dalla funzione di diagnosi richiesta

Il gateway MODBUS-RTU supporta le seguenti funzioni di diagnosi MODBUS:

0x00 Return Query Data

Con questa istruzione il SWIRE-GW-MB risponde con il telegramma inviato dal master MODBUS.

0x01 Restart Communications Option

Con questa istruzione la porta MODBUS del SWIRE-GW-MB viene riavviata. Allo stesso tempo il gateway viene staccato da essa nel caso in cui si trovi nello stato "Listen Only". Con il codice aggiuntivo 0xFF nel byte dati D_{high,res}, inoltre i contatori errori vengono azzerati. I valori dei contatori errori vengono azzerati in caso di interruzione della tensione di alimentazione.

Funzionamento tramite MODBUS-RTU

0x02 Return Diagnostic Register

Il codice diagnostico 0x02 non è supportato dal SWIRE-GW-MB. Il SWIRE-GW-MB risponde a questo messaggio con il valore 0.

0x04 Force Listen Only Mode

Nella modalità "Listen Only", il gateway MODBUS-RTU non risponde ad alcun telegramma del MODBUS-master.

0x0A Clear Counters

Questa istruzione azzera le letture dei contatori dei protocolli ricevuti o inviati in modo errato.

0x0B Return Bus Message Count Restituisce il numero di telegrammi MODBUS riconosciuti nel campo dati D_{res} del telegramma Response.

0x0C Return Bus Communication Error Count Questa istruzione restituisce la lettura del contatore dei telegrammi ricevuti con check sum CRC errata.

0x0D Return Bus Exception Error Count Questa istruzione restituisce il numero di messaggi che il SWIRE-GW-MB ha riconosciuto come errati e a cui ha risposto con un telegramma di errore (per es. telegrammi con codici funzione non supportati).

0x0E Return Slave Message Count

Restituisce il numero di tutti i messaggi che sono stati inviati al SWIRE-GW-MB.

0x0F Return Slave No Response Count

Questa istruzione restituisce il numero di messaggi ricevuti dal SWIRE-GW-MB a cui non è stato risposto (per esempio telegrammi ricevuti ma senza risposta in modalità "listen only" o telegrammi con check sum errata).

0x10 Return Slave NAK Count

Restituisce il numero di telegrammi ricevuti dal gateway a cui è stato risposto con Acknowledge negativo (NAK).

0x11 Return Slave Busy Count

Restituisce il numero di telegrammi a cui il gateway non ha potuto rispondere perché era impegnato nell'elaborazione di altre istruzioni. **0x12** Return Bus Character Overrun Count Restituisce il numero di messaggi a cui il gateway non ha potuto rispondere perché è stato registrato un overrun del buffer di ricezione.

Il tipo e numero di codici funzione supportati dipendono dal tipo di apparecchio del MODBUS-Master. I codici funzione e diagnostici qui riportati possono essere richiamati soltanto se il tipo di apparecchio del MODBUSmaster li supporta.

Richiamo delle informazioni apparecchio SWIRE-GW-MB

Le informazioni apparecchio del gateway MODBUS-RTU possono essere richiamate mediante il codice funzione 0x2B / 0x0E. In risposta SWIRE-GW-MB restituisce i seguenti valori in formato ASCII:

Vendor name	Eaton
Device Code	SW-GW-MB
MajorMinor Revision	VXX.XX

Dati diagnostici

Gli utenti SmartWire possono essere diagnosticati in diversi modi:

- Finché i moduli SmartWire comunicano con il gateway, inviano un bit di stato contenuto tra i dati di stato completi. (paragrafo "Bit di stato", pagina 39)
- Gli utenti SmartWire sono monitorati dal SWIRE-GW-MB. Gli utenti SmartWire guasti sono riconosciuti dal SWIRE-GW-MB. Il gateway quindi imposta i relativi lifebit degli slave.
- All'interno dell'area di registro dei check bit sono visualizzati i moduli SmartWire guasti o difettosi.

Funzionamento tramite MODBUS-RTU

Verifica della configurazione SmartWire

Il sistema di collegamento SmartWire si inizializza guando viene premuto il tasto di configurazione sul gateway MODBUS-RTU. Durante questa procedura tutti gli utenti del sistema vengono indirizzati automaticamente e i loro dati apparecchio vengono inseriti nel gateway MODBUS-RTU. La verifica della corretta inizializzazione del sistema è eseguita tramite le aree di registro dell'identificativo produttore e apparecchio (area registro 40079 - 40142) e il numero di utenti SmartWire (registro 40143). All'interno dell'area di registro dell'identificativo produttore e apparecchio sono visualizzati tutti gli utenti con i loro dati apparecchio che sono stati riconosciuti dal gateway durante l'inizializzazione. Il numero di utenti SmartWire riconosciuti dal gateway durante l'inizializzazione è contenuto nel registro 40143. Gli utenti SmartWire inizializzati in modo errato non sono visualizzati nelle aree registro dell'identificativo produttore e apparecchio, né in quelle che riportano il numero di utenti SmartWire.

Entrambe le aree registro devono essere lette prima del funzionamento e confrontate con la struttura fisica della stringa SmartWire. In tal modo è possibile scoprire i moduli o i collegamenti di comunicazione difettosi prima della messa in funzione. Ricerca erroriOltre alla diagnosi errori mediante il bus di campo MODBUS-
RTU è possibile utilizzare i LED dei moduli SmartWire e quelli
del gateway MODBUS-RTU per circoscrivere gli errori.

Nr.	Componente	Evento	Spiegazione	Rimedio
1	Gateway	LED SmartWire Lampeggiante	La configurazione dell'utente è difettosa.	Controllare il collega- mento a spina
	Modulo Smart- Wire	LED Ready Lampeggiante		 Dopo la sostituzione dell'apparecchio, premere il tasto di
	Moduli Smart- Wire successivi	LED Ready Lampeggiante a intermittenza		configurazione
2	Gateway	LED Ready OFF	errore interno!	Sostituire il gateway
		MODBUS-LED Acceso o lampeggiante		
3	Gateway	LED Ready Lampeggiante	Assenza di comunica- zione sul MODBUS-	MODBUS-RTU-Verificare la connessione
		LED MODBUS OFF	RTU, timeout del Watchdog-Timer o PLC in STOP	 Impostare il PLC su RUN Adattare il Watchdog-Timer all'applicazione
4	Gateway	U-Aux-LED OFF	Tensione assente dai morsetti U-Aux	Verificare modulo di alimentazione, cablaggio e protezione dell'alimentazione delle bobine contattore

Tabella 28: Segnalazione d'errore

5 Appendice

Dati tecnici Ge	eneralità	
Conformità alle norme		
Generalità		IEC/EN 60947, EN 55011, EN 55022 IEC/EN 61000-4, IEC/EN 60068-2-27
Montaggio		Guida DIN IEC/EN 60715 (35 mm)
Dimensioni (L \times A \times P)	mm	35 × 90 × 109
Peso	kg	0,14
Sezioni di collegamento		
rigido	mm ²	0,5 - 1,5
Flessibile con puntalino	mm ²	0,5 - 1,5
Rigido o semirigido	AWG	22 - 16
Cacciavite a taglio	mm	3,5 × 0,8
Coppia di serraggio max.	Nm	0,6
Condizioni climatiche		
Temperatura ambiente		
Funzionamento	°C	-25 - +55
Stoccaggio	°C	-25 - +70
Condensa		Eliminazione della condensa con misure idonee
Umidità relativa, nessuna condensa (IEC/EN 60068-2-30)	%	5 - 95
Pressione atmosferica (servizio)	hPa	795 - 1080
Condizioni ambientali meccaniche		
Tipo di protezione (IEC/EN 60529)		IP20
Grado di inquinamento		2
Posizione di montaggio		verticale

Compatibilità elettromagnetica (EM	C)		
Scariche elettrostatiche (IEC/EN 61000-4-	-2, categor	ia 3, ESD)	
Scarica atmosferica		kV	8
Scarica dei contatti		kV	6
Campi elettromagnetici, (IEC/EN 61000-4-3, RFI)	V/m		10
Radiodisturbo (EN 55011, EN 55022			Classe A
Impulsi Burst, (IEC/EN 61000-4-4, categoria 3)			
Cavi di alimentazione		kV	2
Cavi di segnale		kV	2
Impulsi ad alta energia (Surge) (IEC/EN 61000-4-5, categoria 2)		kV	0,5 (cavi di alimentazione simmetrici)
Ammisione (IEC/EN 61000-4-6)		V	10
Resistenza isolamento			
Misurazione dei valori di traferro e delle vie di dispersione			EN 50178, EN 60947-1, UL 508, CSA C22,2 No 142
Resistenza isolamento			EN 50178, EN 60947-1
(Tensione di alimentazione appareco nica Gateway e apparecchiature ele SmartWire) U _{Gateway}	chiatura e ttroniche	elettro- utente	
Tensione nominale d'impiego U _{Gateway}		V DC	24 (-15 %, +20 %)
Campo ammissibile			20,4 - 28,8
Ondulazione residua		%	≦5
Corrente assorbita gateway max a 24 V DC		mA	350 (tipo 110 per il Gateway + tipo 15 per ciascun modulo SmartWire)
Interruzioni di tensione (IEC/EN 61131-2)		ms	10
Dissipazione a 24 V DC		W	tipico 6
Protezione contro inversioni di polarità			si
Protezione contro il cortocircuito sul lato SmartWire			si

Tensione di alimentazione U _{AUX} (tensione di zione per la commutazione degli utenti Smar es. bobine contattore)	alimenta- rtWire per	
Tensione nominale d'impiego U _{AUX}	V DC	24 (-15 %, +20 %) (Derating a partire da 40 °C)
Campo ammissibile	V DC	20,4 - 28,8 a 45 °C: 21 - 28,8 a 50 °C: 21,6 - 28,8 a 55 °C: 22,2 - 27,6
Corrente d'ingresso U _{AUX} a 24 V DC	A	typ. 3
Ondulazione residua	%	≦5
Interruzioni di tensione (IEC/EN 61131-2)	ms	10
Protezione contro inversioni di polarità	_	si
Protezione contro il cortocircuito sul lato SmartWire	_	No, necessaria protezione esterna 3 A, interruttore automatico FAZ-Z3

Display a LED

pronto al funzionamento	Ready: Verde
Alimentazione contattori SmartWire	U _{AUX} : Verde
MODBUS-RTU di stato	MODBUS-RTU: giallo
Stato SmartWire	SmartWire: Verde

MODBUS-RTU

Tipi di collegamento	SUB-D 9 poli, presa
Standard di trasmissione	RS232 o RS485
Indirizzo utente	1 - 125
Impostazione indirizzi	Interruttore DIP
Impostazione protocollo	Interruttore DIP

Separazione galvanica	
Tensione di alimentazione U _{AUX}	si
Tensione di alimentazione U _{Gateway}	si
allo SmartWire	si
Funzione	MODBUS Slave
Protocollo bus	MODBUS-RTU
Resistenze di terminazione bus	da azionare esternamente
Velocità di trasmissione dati	9,6 kbit/s, 19,2 kbit/s, 38,4 kbit/s, 57,6 kbit/s impostabile mediante gli interruttori DIP

Sistema di collegamento SmartWire

Tipi di collegamento		Connettore maschio, a 6 poli
Linea dati/alimentazione		Cavo piatto a 6 fili
Lunghezza cavo max sistema SmartWire	m	4 m
Chiusura bus		no
Indirizzo utente		Assegnazione automatica
Utente		max. 16
Impostazione indirizzi		nessuna
Separazione galvanica		
Tensione di alimentazione U _{AUX}	_	no
Tensione di alimentazione U _{Gateway}		no

Appendice

Indice analitico

A	Aree registro4	4
В	Baudrate2 Bit di stato	1 9
C	Cablaggio della rete a norma EMC1 Cavo di collegamento	9
	collegamento1	3
	CFG-Dyte4	1
	Codici funziono	ð n
	Collegamento della tensione di alimentazione 1	9 1
	Compatibilità EMC	9
D	Dati di controllo	85
F	Funzioni di diagnosi4	9
H	Holding registro2	8
Ī	Identificativo produttore e apparecchio4	0
	Impostare indirizzo utente1	1
	Indirizzo utenet	
	Impostazione1	1
	Indirizzo utente	1 0
	Input-legistro	Ö
	prima 2	3
	Interruttore DIP 1	1
	Istruzioni di lettura4	8
	Istruzioni di scrittura4	6

L	LED	9
	LED di stato	
	LED Ready	
	LED SmartWire	
	Lifebit	39
	Lunghezza linea max RS232	21
	Lunghezza linea max RS485	21
	Lunghezze di linea	
Μ	MODBUS	
	funzioni di diagnosi	
	MODBUS-RTU	5
	MODBUS-RTU Master	
	Configurazione	27
	MODBUS-RTU-LED	25
	MODBUS-telegramma	45
	Modulo	
	SmartWire-I/O	9
N	Norme	55
D	Darità	
r	importaziono	11
	Pin-funzioni	۱۱ ۱۷
		10
R	Rappresentazione bit	
	abbreviata	31
	completa	31
	Resistenza di terminazione	19
	Ricerca errori	53
	RS485	17

S	Schermatura Segnalazione d'errore	19 53
	Separazione galvanica	21
	SmartWire	5
	SWIRE-4DI-2DO-R	
	dati di stato	37
	SWIRE-GW-MB	5
U	U-Aux-LED	24
V	Velocità di trasmissione	
	impostazione	11
W	Watchdog-Timer	43