Connection System SmartWire SWIRE-GW-MB

All brand and product names are trademarks or registered trademarks of the owner concerned.

Emergency On Call Service

Please call your local representative: <u>Eaton.eu/aftersales</u> or Hotline of the After Sales Service: +49 (0) 180 5 223822 (de, en) <u>AfterSalesEGBonn@eaton.com</u>

Original Operating Instructions

The German-language edition of this document is the original operating manual.

Translation of the original operating manual

All editions of this document other than those in German language are translations of the original German manual.

1st published 2008, edition date 11/08, 2nd edition 07/09, See revision protocol in the "About this manual" chapter

© 2008 by Eaton Industries GmbH, 53105 Bonn

Production: René Wiegand Translation: globaldocs GmbH

All rights reserved, including those of the translation.

No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without written permission of Eaton Industries GmbH, Bonn.

Subject to alteration without notice.

Danger! Dangerous electrical voltage!

Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit.
- Cover or enclose neighbouring units that are live.
- Follow the engineering instructions (IL/AWA) of the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE) must be connected to the protective earth (PE) or to the potential equalisation. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference does not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.

- Suitable safety hardware and software measures should be implemented for the I/O interface so that a line or wire breakage on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the low voltage for the 24 volt supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD 384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause restart.
- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.

- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergencystop devices should be implemented.
- Wherever faults in the automation system may cause damage to persons or property, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).

Contents

	About this manual List of revisions	3 3
	Target group	3
	Additional device manuals	3
	Reading conventions	4
	Reading conventions	4
1	Gateway MODBUS RTU SWIRE-GW-MB	5
	System overview	6
	Design of the SWIRE-GW-MB	7
	Functional description	7
	Example for SmartWire Module	8
	 SmartWire module for DILM 	8
	 SmartWire-I/O module 	9
2	Installation	11
	MODBUS RTU station addresses and protocol	
	parameters	11
	Connect SmartWire connection cable	13
	Connecting the power supply	14
	Connecting MODBUS RTU	16
	 Data transfer with RS232 	16
	 Data transfer with RS485 	17
	Terminating resistors	19
	EMC-conformant wiring of the network	19
	Potential separation	21
	Max. cable lengths	21
3	Commissioning	23
	Initial starting	23
	Meaning of the status LEDs	24
	– Ready-LED	24
	– U-Aux-LED	24
	 SmartWire LED 	25
	– MODBUS-RTU-LED	25

4	Operation through MODBUS RTU	27
	Incorporation in the field bus configuration	27
	Data mapping of SmartWire stations	28
	– Data diagram	29
	 Abbreviated and full bit representation 	31
	 Control data areas 	38
	 Check bits 	38
	– Life bits	39
	 Status bits 	39
	 Manufacturer and device ID of SmartWire 	
	station	40
	 Hardware and software version 	41
	 Number of SmartWire stations 	43
	 Setting the watchdog timer 	43
	Access methods to the register areas	44
	MODBUS-functions	45
	 Structure of a MODBUS message 	45
	 Write commands 	46
	 Read commands 	48
	MODBUS diagnostic functions (0x08)	49
	 Polling device information for SWIRE-GW-MB 	51
	– Diagnostic data	51
	 Checking the SmartWire configuration 	52
	Fault-finding	53

5	Appendix	55
	Technical data	55
	– General	55
	LED indicators	57
	MODBUS-RTU	57
	Connection system SmartWire	58
	Dimensions	59

About this manual

List of revisions		The following significant amendments have been introduced since previous issues:				
Edition Page Key word date		d New		Modification	Deleted	
07/09	Imprint	Emergenc	y On Call Service		✓	
	6	section "S	ystem overview"		\checkmark	
Target g	roup		This manual is intende engineers. Extensive k RTU fieldbus and prog are assumed. Furthern the handling of the Sn	nowledge gramming o nore, you s	regarding the M of a MODBUS-RT should also be fa	ODBUS- U master
Addition	al device	manuals	Further information cc found in:	oncerning 1	he SmartWire to	pic can be
			 Connection system MN03402001Z-EN (previously AWB12 Connection system MN05006003Z-EN (previously AWB252 Connection system MN03407001Z-EN (previously AWB12 	10+1251- SmartWire 28+1251- ⁻ SmartWire	1591GB), , EASY223-SWIR 1589GB), SWIRE-GW-DP	E
			The manuals are avail the Eaton website.	able for do	ownload as PDF f	iles from
			To find the document <u>http://www.moeller.nd</u> and enter the docume	et/en/supp	<u>ort/index.jsp</u>	۱.

Reading conventions

Symbols used in this manual have the following meanings:

► Indicates instructions to be followed.

Caution!

Warns of a hazardous situation that could result in damage to the product or components.

Warning!

Warns of the possibility of serious damage and slight injury.

Danger!

Warns of the possibility of a hazardous situation that could result in major damage and serious or fatal injury or even death.

Draws your attention to interesting tips and supplementary information

For greater clarity, the name of the current chapter is shown in the header of the left-hand page and the name of the current section in the header of the right-hand page. This does not apply to pages at the start of a chapter and empty pages at the end of a chapter.

1 Gateway MODBUS RTU SWIRE-GW-MB

The communication module SWIRE-GW-MB has been developed for automation tasks with the PROFIBUS-DP field bus. SWIRE-GW-MB provides a gateway between the MODBUS RTU field bus system and the SmartWire connection system and can be used only in combination with SmartWire. The MODBUS RTU gateway always works as a modular slave within the MODBUS RTU network.

System overview

The SmartWire connection system is integrated into a MODBUS-RTU network as a modular slave.

Figure 1: Gateway MODBUS SWIRE-GW-MB in network

- ① Master area (PLC or PC)
- (2) Slave area with SmartWire system

The SWIRE-GW-MB gateway and the components of the SmartWire system are built-in devices. They must be installed in an enclosure, switch cabinet or distribution board with protection to IP54 or higher.

Design of the SWIRE-GW-MB	The illustration below shows the SWIRE-GW-MB. $\begin{array}{c} \hline \\ \hline $
	 MODBUS-RTU connection through 9-pole SUB-D socket Configuration button Status LEDs Gateway power supply terminals Contactor coil (Aux) power supply terminals Socket OUT for SmartWire connection cable DIP switch for address and logging settings
Functional description	The gateway SWIRE-GW-MP enables the connection of the SmartWire system to a MODBUS RTU communication network. The SmartWire system can consist of a rung with up to 16 stations. Stations can be, for example, SmartWire modules for DILM or SmartWire I/O modules. In general, the SmartWire stations can transmit up to four bits of control data (station's output data) and up to eight bytes of status data (station's input data).

Gateway MODBUS RTU SWIRE-GW-MB

Example for SmartWire SmartWire module for DILM Module The illustration below chows the SmartWire module for

The illustration below shows the SmartWire module for DILM.

- 1 IN and OUT sockets for the connection cable
- Green LED
- (3) Mechanical switching position indicator
- ④ Catch slider
- 5 Connection pins
- 6 Connection terminals X1-X2
- Cableway
- (8) Connection terminals X3-X4

Status data

• Switching state feedback for contactor and PKZM0 (read data, as viewed from MODBUS RTU master)

Control data:

• Switching signal for contactor actuation On/Off (write data, as viewed from MODBUS RTU master)

SmartWire-I/O module

The illustration below shows the SmartWire I/O module.

Figure 4: SWIRE-4DI-2DO-R

- ① Socket In for SmartWire connection cable
- (2) Socket Out for SmartWire connection cable
- ③ Terminals for elay output Q1
- ④ Terminals for Inputs I1 and I2
- (5) Green LEDs
- (6) Terminals for Inputs I3 and I4
- ⑦ Terminals for relay output Q2

Status data

• State of digital inputs (four bits) (read data, as viewed from MODBUS RTU master)

Control data:

• Actuation of SmartWire module's relay outputs (two bits) (write data, as viewed from MODBUS RTU master)

07/09 MN03407002Z-EN

2 Installation

	This section tells you ho protocol parameters fo		ion addresses and
MODBUS RTU station addresses and protocol parameters	To be able to use the gateway SWIRE-GW-MB within a MODBUS RTU network, its station address, parity and baud rate must be set before use. These settings are made using DIP switches 2 to 10 on the device's underside.		
	DIP switch 1 is not assigned with a function.		
	The MODBUS RTU station address for the SWIRE-GW-MB is set in binary format with DIP switches 6 to 10, providing a total of 32 addresses from 0 to 31. Valid addresses for the SWIRE-GW-MB are 1 to 31.		
	The baud rate of the MODBUS RTU network is set with DIP switches 2 and 3.		
	Possible baud rates, in The corresponding DIP		
	Table 1: Setting the b	aud rate	
	Transmission rate [kBit/s]	DIP switch 3	DIP switch 2
	9.6	OFF	OFF
	19.2	OFF	ON
	38.4	ON	OFF
	57.6	ON	ON
	The parity is set with D	IP switches 4 and ^r	as shown in the

The parity is set with DIP switches 4 and 5, as shown in the table below.

Number of stop bits	Parity	DIP switch 5	DIP switch 4
2	NO	OFF	OFF
1	NO	OFF	ON
1	ODD	ON	OFF
1	EVEN	ON	ON

Table 2: Parity settings

No Parity (NO) is obtained with two different DIP switch positions, which differ in the number of stop bits (1 or 2).

The illustration below shows the DIP switches on the gateway device's underside.

Figure 5: Bottom of device SWIRE-GW-MB

The following illustration shows the gateway's default (factory set) DIP switch positions.

On the DIP switch (Fig. 7) on the device underside, set the gateway's station address, parity and baud rate.

Figure 7: Setting the station address, parity and baud rate

Connect SmartWire connection cable	The slaves in the SmartWire system are connected unsing 6- pole connection cables available in different lengths. The cable is fitted with plugs at both ends.
	Connect the 6-pole SmartWire connection cable to the OUT socket on the device underside.

	Figure 8: Connecting SWIRE-GW-MB
	► Connect the other SmartWire stations.
\bigtriangledown	Caution! The overall length of the SmartWire line may not exceed a maximum of 4 m.
Connecting the power supply	The gateway SWIRE-GW-MB is operated with a 24 V DC supply voltage. An additional 24 V DC control voltage is provided for the contactor coils.
	 Connect the SWIRE-GW-MB via the connection terminals 24 V and 0 V(-Gateway-) to the 24 V DC power supply. Connect the 24 V DC control voltage for the contactor coils via the connection terminals Aux 0 V and 24 V e.

Figure 9: Connecting the power supply

The terminals are suitable for AWG22 to AWG16 cables and for flexible cables with a cross-section of 0.5 to 1.5 mm^2 . Tighten the terminals to 06 Nm.

The gateway is protected by a 1 A gG/gL line protection fuse or a 1 A miniature circuit-breaker featuring characteristic C. The fusing of the incoming supply for the contactor coils is implemented using 3 A gG/gL fuses or a 3 A miniature circuit-breake featuring characteristic Z.

Danger!

In safety-relevant applications the power supply providing power to the SmartWire system must feature a PELV power supply unit (protective extra low voltage).

Connecting MODBUS RTU	The MODBUS RTU gateway SWIRE-GW-MB transfers data
	through the two communication standards RS232 and
	RS485. The pin assignment of the 9-pin D-sub plug for
	connection to the MODBUS RTU gateway's 9-pin D-sub
	socket must correspond with the communication standard
	used.

Data transfer with RS232

If you are using the RS232 communication standard, pins 2, 3 and 5 of the gateway's D-sub socket are used for data transfer.

Caution!

RS232 should be used only for point-to-point connections between the SWIRE-GW-MB and a PLC or PC.

Caution!

For communication through RS232 use only pins 2, 3 and 5!

Using preassembled data cables that use pins 6, 8 and 9 can damage the SWIRE-GW-MB or the other connected device.

Pin assignment of the gateway's port for RS232

Figure 10: Pin assignment RS232

The following table lists the signals of SWIRE-GW-MB.

Table 3: Signals SWIRE GW-MB

Pin	Signal name	Designation
1	Not used	-
2	RxD out	RS232 transmit
3	TxD in	RS232 receive
4	Not used	-
5	GND	Reference potential
6	+ 5V	+ 5V, electrically isolated
7	Not used	-
8	Rx/Tx – (A-Line)	RS485 receive/Send data N
9	Rx/Tx + (B-Line)	RS485 receive/Send data P

Data transfer with RS485

If you are using the RS485 communication standard, pins 5,6, 8 and 9 of the gateway's D-sub socket are used for data transfer. The Table 4 below lists the pin functions and assignments of the 9.pin D-sub connector.

Caution!

For communication through RS485 use only pins 5,6,8 and 9! Using preassembled data cables that use pins 2 and 3 can damage the SWIRE-GW-MB or the other connected device.

Pin functions RS485 SWIRE-GW-MB

Figure 11: Terminal assignment RS485

Table 4:	SWIRE-GW-MB s	signals
----------	---------------	---------

Pin	Signal name	Designation
1	Not used	-
2	RxD out	RS232 transmit
3	TxD in	RS232 receive
4	Not used	-
5	GND	Reference potential
6	+ 5V	+ 5V, electrically isolated
7	Not used	-
8	Rx/Tx – (A-Line)	RS485 receive/Send data N
9	Rx/Tx + (B-Line)	RS485 receive/Send data P

For data transfer, only pins 8, 9 and screen are required.

Connect the 9-pin D-sub cable to the gateway's D-sub socket.

The cable type has an influence on the available bus cable length and thus on the data transfer rate (\rightarrow section "Max. cable lengths", page 21).

Terminating resistors	If the RS485 communication standard is used, the first and last station in a MODBUS RTU field bus segment must terminate the field bus with an energized termination resistor. The bus termination resistor is connected externally, either as a separate terminating resistor or through a special D-sub connector with built-in bus termination. Connect the terminating resistor, which should have a resistance of 150 Ω (0.5 W) between the two signal lines RxD/TX (A-line) and Rx/Tx+ (B-line).		
EMC-conformant wiring of the network	Electromagnetic interference can cause faults in the field bus. Their influence can be limited by implementing suitable EMC measures, such as:		
	 EMC-conformant system configuration EMC compliant cable installation and Avoiding high potential differences correct installation of the MODBUS systems (cables, bus plug connection, etc.) 		
	The electromagnetic interference can be significantly reduced by the use of a cable screen (shield). The following illustrations indicate the correct method for connecting the shield.		

Installation

for mounting plate

Figure 12: Shielding of network cable

Caution!

Potential equalisation currents may not flow on the shield. A safe method of equipotential bonding must be provided to ensure this.

Potential separation	The following electrical isolation measures apply for the SWIRE-GW-MB interfaces:					
	 Potential isolation of the MODBUS-RTU to the supply voltage and to the SmartWire system No isolation between the supply voltage for the gateway and the supply voltage for the contactor coils 					
	 No electrical isolation between the supply voltages and the SmartWire system. 					
Max. cable lengths	For each communication standard (RS232 and RS485) maximum bus cable lengths are specified.					
	RS485 When RS485 is used, the maximum cable length depends on the cross-section of the data cable. At a conductor cross- section of 0.25 mm ² (AWG24) or greater, the maximum cable length is 1000 m. With data cables of category 5, the bus length can be up to 600 m.					
	RS232 For the RS232 standard and a cable capacitance of u to 2500 pF the following maximum cable lengths are specified.					
	Table 5: Maximum cable lengths for RS232					
	Baud rate [kBit/s]	Max. cable length [m]				
	9.6	152				
	19.2	15				
	38.4	7.5				
	57.6 5					

07/09 MN03407002Z-EN

3 Commissioning

This section tells you how to take the gateway into operation.

► Before switching on the supply voltage for the gateway ensure that the contactor coils, the bus connection and the SmartWire system are correctly connected.

Make sure that the gateway's MODBUS RTU address, the parity and the baud rate for the MODBUS RTU network are set correctly with the DIP switches on the gateway's underside.
Switch on the supply voltages for the contactors and the gateway.
Die gateway's LEDs now indicate the following states:
 The ready LED of the SWIRE-GW-MB flashes. The U-Aux LED of the SWIRE-GW-MB is permaneltly ON. The MODBUS-RTU-LED is OFF (no communication via MODBUS-RTU). The SmartWire LED flashes as the SmartWire slaves have
not yet been configured.
 The first SmartWire module flashes the ready LED.
 The ready LEDs on all other SmartWire modules flash in pulses.
Press the configuration button on the gateway and keep it pressed for about 2 s until the ready LED switches from flow flashing to fast flashing.
The actual configuration of the SmartWire system, i.e. all connected SmartWire modules, are now automatically read into the gateway. An address is assigned in turn to each SmartWire station, starting with address 1 and incrementing in steps of 1. When the configuration has been read in to the SmartWire system, the SWIRE status LED on the MODBUS RTU gateway and the Ready LEDs on the SmartWire module change from slow flashing to continually lit. The SmartWire

	system then continually keeps the saved hardware configuration synchronized with the existing configuration. Any discrepancies identified by the system are indicated by a slowly flashing SmartWire LED (\rightarrow section "Fault-finding", page 53).
	Switch the MODBUS RTU master to Run. As soon as the gateway is incorporated in the MODBUS RTU field bus, the SWIRE-GW-MB indicates send and receive data transfer activity with a yellow flashing or constantly lit MODBUS RTU LED.
Meaning of the status LEDs	The gateway SWIRE-GW-MB has four status LEDs. These are green (UAUX, Ready and SmartWire) and yellow (MODBUS RTU).

Ready-LED

1	continuous	Power present, communication
	light	through MODBUS active.
2	OFF	No supply voltage available for the
		gateway and the SmartWire or internal
		fault in the gateway
3	Fast flashing	New configuration has been activated
		via the configuration button
4	Slow flashing	MODBUS communication not active

U-Aux-LED

	1
	2

1	continuous light	Supply voltage available for the contactor coils
2	OFF	No supply voltage available

SmartWire LED

	1	continuous light	SmartWire system is ok
2	2	OFF	No supply voltage available on the MODBUS gateway
	3	Fast flashing	Transmission error in the SmartWire system
	4	Slow flashing	Error in the configuration of the SmartWire system, target and actual configuration do not match

MODBUS-RTU-LED

1	1	continuous light	MODBUS communication active (control data being transmitted). The watchdog timer is running.
2	2	OFF	No supply voltage present; no data transfer through MODBUS RTU

MODBUS timer timeout

07/09 MN03407002Z-EN

4 Operation through MODBUS RTU

Incorporation in the field bus configuration	To configure the higher-level MODBUS RTU master, perform the following steps.
	Include a function block for a MODBUS RTU master in the configuration of the used PLC.
	 Assign the communications port to be used for MODBUS RTU communications to this function block.
	In the MODBUS RTU function block make the required MODBUS network settings, in particular the MODBUS RTU gateway settings (baud rate, parity stop bits and address).
	Specify the size of the register areas for the MODBUS network, taking into account the data to be transferred.
	The MODBUS gateway SWIRE-GW-MB has a built-in adjustable watchdog timer (see section "Setting the watchdog timer", page 43), which triggers a fault state in the gateway if MODBUS communication fails. To prevent timeouts, the control data from the SWIRE-GW-MB should be written periodically.

Data mapping of SmartWire stations	Within each MODBUS RTU device, the input and output level data are stored in various registers (input register and holding register).
	For the MODBUS RTU gateway the status and control data for the connected SmartWire stations are saved to the holding register of the SWIRE-GW-MB, which contains the following data:
	 Status information (input data) of the SmartWire stations Control data (output data) of the SmartWire stations Parity bits of the SmartWire stations Device and manufacturer's ID of the SmartWire stations Life bits of the SmartWire stations Number of connected SmartWire station Time value of the built-in MODBUS timer

This data is saved to the registers as follows:

07/09 MN03407002Z-EN

Designation	Register area	Data width:	Diagram			
Abbreviated control data	40001 - 40002	4 bytes	two bits per SmartWire stations			
Complete control data	40003 - 40006	8 bytes	four bits per SmartWire station			
Abbreviated status data 1	40007 - 40008	4 bytes	two bits per SmartWire stations			
Check bits	40009	2 bytes	1bit per SmartWire station			
Abbreviated status data 2	40010 - 40013	8 bytes	four bits per SmartWire station			
Complete status data	40014 - 40077	128 bytes	eight bits per SmartWire station			
Life bits	40078	2 bytes	1bit per SmartWire station			
Station ID	40079 - 40142	128 bytes	eight bits per SmartWire station			

Table 6:	Data mapping in the SWIRE-GW-MB
----------	---------------------------------

Operation through MODBUS RTU

Designation	Register area	Data width:	Diagram
Number of SmartWire stations	40143	2 bytes	binary diagram
Watchdog timer (non- retentive)	44097	2 bytes	Low byte: Time = value × 10 ms High byte: not assigned
Watchdog-Timer (remanent)	44098	2 bytes	Low byte: Time = value × 10 ms High byte: not assigned

Data diagram

The MODBUS RTU gateway always outputs its data according to the physical location of the SmartWire stations. The first data bits within each register area are for the first SmartWire station next to the MODBUS RTU gateway.

The following table provides an example with abbreviated status data area 1 (register area 40007 to 40008).

Operation through MODBUS RTU

Register area	Bit no.	Data content	No. of SmartWire station
40007	0 (LSB) ¹⁾	Status bit 1	1 slave
	1	Status bit 2	1 slave
	2	Status bit 1	2 slave
	3	Status bit 2	2 slave
	4	Status bit 1	3 slave
	5	Status bit 2	3 slave
14 15 (MSB) ²⁾	14	Status bit 1	8 slave
	Status bit 2	8 slave	
40008	0 (LSB) ¹⁾	Status bit 1	9 slave
	1	Status bit 2	9 slave
	2	Status bit 1	10 slave
	3	Status bit 2	10 slave
	4	Status bit 1	11 slave
	5	Status bit 2	11 slave
	14	Status bit 1	16 slave
	15 (MSB) ²⁾	Status bit 2	16 slave

Table 7: Arrangement of register contents

1) LSB = Least Significant Bit,

2) MSB = Most Significant Bit

Abbreviated and full bit representation

Depending on the register data area, the status data (input data of the SmartWire stations) and control data (output data of the SmartWire stations) are output either in an abbreviated form or in full.

Abbreviated views show only the first status/control bits of each SmartWire station. For SmartWire stations with a higher number of status/control bits than shown in the abbreviated representation, only the allowed number of bits is shown. In the full view, all of the data of the SmartWire station is shown. Depending on the SmartWire station, this view may contain unused bit fields that are also transferred through MODBUS RTU.

The example below illustrates the abbreviated representation of status and control data for the stations SWIRE-DIL and SWIRE-4DI-2DO-R.

Operation through MODBUS RTU

Example:

Status and control data of SWIRE-DIL and SWIRE-4DI-2DO-R

SWIRE-DIL has the following status and control data:

Table 8: Control data (write data, as seen from MODBUS RTU masters)

SWIRE-DIL	Bit 3	Bit 2	Bit 1	Bit 0
Contactor actuation				0/1

The values 0 and 1 have the following meanings (Table 9):

Table 9: Definition of the bit

Value	Meaning
0	Switch off contactor
1	Switch on contactor

Table 10: Status data (read data, as seen from MODBUS RTU master)

SWIRE-DIL	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Contactor status								0/1
PKZ status							0/1	
SWIRE-DIL status bit	0/1							

The values 0 and 1 have the following meanings (Table 11):
Value	Contactor status	PKZ status	SWIRE-DIL status bit		
0	OFF	OFF	ОК		
1	ON	ON	Fault		

Table 11: Definition of the bit

SWIRE-4DI-2DO-R has the following status and control data:

Table 12: Control data (write data, as seen from MODBUS RTU masters)

SWIRE-DIL	Bit 3	Bit 2	Bit 1	Bit 0
Actuation output Q1				0/1
Actuation output Q2			0/1	

The values 0 and 1 have the following meanings (Table 13):

Table 13: Definition of the bit

Value	Meaning
0	Switch off relay
1	Switch on relay

Table 14:	Status data (read data, as seen from MODBUS RTU
	master)

SWIRE-4DI-2DO-R	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status input I1								0/1
Status input I2							0/1	
Status input I3						0/1		
Status input I4					0/1			
Status bit SWIRE-4DI-2DO-R	0/1							

The values 0 and 1 have the following meanings (Table 15):

Table 15: Definition of the bit

	Status input	SWIRE-4DI-2DO-R status bit
0	Input 0	ОК
1	Input 1	Fault

The display format for status and control data depends on the selected register area.

For the status data you can select two different abbreviated representations:

- Abbreviated status data 1: Two bits per SmartWire station, register area 40007 to 40008
- Abbreviated status data 2: Four bits per SmartWire station, register area 40010 to 40013

Abbreviated control data can be shown only in one representation (register area 40001 to 40002) and contain two bits per SmartWire station. The table below lists the status and control data shown in each abbreviated representation.

Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
40001	S8	S8	S7	S7	S6	S6	S5	S5	S4	S4	S3	S3	S2	S2	S1	S1
	Q2	Q1														
40002	S16	S16	S15	S15	S14	S14	S13	S13	S12	S12	S11	S11	S10	S10	S9	S9
	Q2	Q1														
40007	58	58	S7	S7	S6	S6	S5	S5	S4	S4	S3	S3	S2	S2	S1	S1
	12	11	12	1	12	11	12	11	12	11	12	11	12	11	12	11
40008	S16	S16	S15	S15	S14	S14	S13	S13	S12	S12	S11	S11	S10	S10	S9	S9
	I2	I1	12	11												
40010	S4	S4	S4	S4	S3	S3	S3	S3	S2	S2	S2	S2	S1	S1	S1	S1
	14	13	12	11	14	3	12	11	14	13	12	11	I4	3	12	I1
40011	58	58	58	S8	S7	S7	S7	S7	S6	S6	S6	S6	S5	S5	S5	S5
	14	13	12	11	14	13	12	11	14	13	12	11	I4	I3	12	I1
40012	S12	S12	S12	S12	S11	S11	S11	S11	S10	S10	S10	S10	S9	S9	S9	S9
	I4	I3	I2	I1	I4	I3	I2	I1	I4	I3	I2	I1	14	13	12	I1
40013	S16	S16	S16	S16	S15	S15	S15	S15	S14	S14	S14	S14	S13	S13	S13	S13
	I4	I3	I2	I1												

Table 16: Register view, abbreviated status and control data

Sx = number of SWIRE station, Qy = control bit y of station x, Iy = status bit y of station x

Table 17: Abbreviated	status a	and control	data views
-----------------------	----------	-------------	------------

SmartWire station	Abbreviate data (4000		Abbreviated status data (40010 – 40013)					
			Abbreviat data (40007 – 4					
	Bit 0	Bit 1	Bit 0	Bit 0 Bit 1		Bit 3		
SWIRE-DIL	Contactor actuation		Contacto r status	PKZ status				
SWIRE-4DI-2DO-R	Output Q1	Output Q2	Input I1	Input I2	Input I3	Input I4		

In the full representation all status and control bits of each SmartWire station are output. The complete control data use four bits of register area 40003 to 40006 for each SmartWire station. The complete status data use eight bits per SmartWire station within register area 40014 to 40077. The table below shows the structure of the status data bytes of a SmartWire station within register area 40014 to 40017.

Register	High byte
40014	Low byte status data byte 2
	High byte status data byte 1
40015	Low byte status data byte 4
	High byte status data byte 3
40016	Low byte status data byte 6
	High byte status data byte 5
40017	Low byte status data byte 8
	High byte status data byte 7

Table 18: Status bytes for register area 40014 – 40017

The table below shows the data contained within this register for a SWIRE-4DI-2DO-R.

				10	017				
Regis ter		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
40014	Low byte	-	-	-	-	-	-	-	-
	High byte	SWIRE- 4DI-2DO-R status	-	-	-	Input I4	Input I3	Input I2	Input I1
40015	Low byte	-	-	-	-	-	-	-	-
	High byte	-	-	-	-	-	-	-	-
40016	Low byte	-	-	-	-	-	-	-	-
	High byte	-	-	-	-	-	-	-	-
40017	Low byte	-	-	-	-	-	-	-	-
	High byte	-	-	-	-	-	-	-	-

Table 19: SWIRE-4DI-2DO-R status data, register area 40014 – 40017

Whether it is best to select an abbreviated or a full data representation depends on the type of SmartWire station: An abbreviated representation is best suited for stations with a small number of status or control bits, as this reduces the number of unused bit fields within the MODBUS RTU protocol; a full representation is best used for stations with a large number of status or control bits.

Operation through MODBUS RTU

Control data areas

The control (output) data of the SmartWire stations are located in two different register areas, one for the abbreviated representation (two control bits per SmartWire station, register area 40001 to 40002) and one for the full representation (four control bits per SmartWire station, register area 40003 to 40006). The MODBUS RTU gateway does not support the simultaneous use of both of these data areas, since this could cause inconsistencies between the control data in the two register areas. To switch between the two control data areas, you must switch the MODBUS RTU gateway off and on again.

Check bits

The register area for parity bits is used to determine whether a station on the SmartWire has failed or has an internal fault state. Each SmartWire station has a parity bit. Within the register area, the parity bits are arranged according to the physical arrangement of the SmartWire stations. The parity bits are defined as follows:

Table 20: Definition of parity bits

Parity bit	SmartWire station status
0	Station connected and working correctly
1	Station has failed or is defective

Each parity bit represents a logic OR link of the status and life bit of its SmartWire station. It therefore contains the key diagnostic information about its SmartWire station, so that an additional evaluation of status and life bits may not be necessary.

Life bits

Register area 40078 is used for evaluating connected or failed SmartWire stations. It contains a life bit for each station for this purpose. Within the register area, the life bits are arranged according to the physical arrangement of the SmartWire stations. The life bits are defined as follows:

Table 21: Definition of life bits

Life bit	Communication status of SmartWire station
0	The SmartWire station has failed
1	The SmartWire station is communicating correctly

Status bits

Each SmartWire station sends status bits to the MODBUS RTU gateway. The status bit indicates whether the station is working correctly or has changed to a fault state. Status bits are contained only in the full representation (register area 40014 to 40077). Within this register area the status bit is the highest bit of the lowest status data byte of its station. The status bits are defined as follows:

Table 22: Definition of status bits

Status bit	State of SmartWire station
0	ОК
1	Fault

Operation through MODBUS RTU

Manufacturer and device ID of SmartWire station

The manufacturer and device ID data field (register area 40079 to 40142) allows the arrangement of SmartWire device types identified by the gateway as well as their hardware and software versions can be read out through MODBUS RTU. Each SmartWire station occupies eight bytes for manufacturer and device ID within the register area. These bytes contain the following information:

Table 23: Manufacturer and device ID of a SmartWire station	۱
---	---

Data byte	Meaning	Value range	Remark
1	Node address	0x01 - 0x10	Node address 1 to 16 of station within SmartWire system
2	Slave part no./device identification:	0x00 - 0xFF	Slave type (bit 7), device ID (bit 0 to 6)
3	Hardware version	0x00 - 0xFF	Hardware version of station
4	Software version	0x00 - 0xFF	Software version of station
5	CFG-byte	0x00 - 0xFF	Read configuration identifier
6	Free	0x00 - 0xFF	Not used
7	Lifeguarding time	0x00 - 0xFF	Lifeguarding time of SmartWire system (value × 10 ms)
8	Manufacturer ID	0x00 - 0xFF	0 = No ID (reserved) 1 = Eaton 2 - 255 = unused; available for assignment

Device identification:

The SmartWire stations have the following device IDs (data byte 2):

Table 24: Device type codes

Data bit 0 to 6	Device type
0x20	SWIRE-DIL
0x21	SWIRE-4DI-2DO-R

Hardware and software version

The hardware and software versions (data bytes 3 and 4) are given as a decimal number (for example version 1.5). The corresponding data byte is split into the two indices for predecimal and decimal places as follows:

Table 25: Hardware and software version data bytes

Data bytes one and four	Hardware/software version
Bit 0 - 3	Decimal places
Bit 4 - 7	Pre-decimal place

The hardware and software version code is not supported by all SmartWire device types.

CFG-byte

A description of the status data for each SmartWire stations is contained in the the station's CFG byte (data byte 5). This byte contains information about the station's number and format of status data bytes. The CFG byte has the following structure:

Bit	Meaning	Value range
0 (LSB) ¹⁾	Length of status data	00 = 1 byte (one word)
1		01 = 2 bytes (two words) 02 = 3 bytes (three words)
2		03 = 4 Bytes (four words)
3		04 = 5 bytes 05 = 6 bytes
-		06 = 7 bytes
		07 = 8 bytes
4	Type of status data	00 = no status data
5		01 = Input data
6	Data structure	0 = Byte structure
		1 = Word structure
7 (MSB) ²⁾	Data consistency	0 = consistency through byte or word
		1 = consistency through entire length

Table 26: Structure of the CFG byte

¹⁾ LSB = Least Significant Bit, ²⁾ MSB = Most Significant Bit

The status data length is described with data bits 0 to 3 of the CFG byte. Each SmartWire station can have up to eight status data bytes. These are contained in the station with either a byte structure (eight status bytes) or a word structure (four data words). The status data structure (word or byte) is defined with bit 6.

The register area for manufacturer and device ID is written once during initialization of the SWIRE-GW-MB. Any failed SmartWire stations remain in this representation and are removed only at the next startup of the SWIRE-GW-MB.

Number of SmartWire stations

The number of device types connected to the SmartWire is given in register area 40143. Up to 16 SmartWire stations can be connected for each gateway.

The register area for the number of SmartWire stations is written once during initialization of the SWIRE-GW-MB. Any failed SmartWire stations remain in this representation and are removed only at the next startup of the SWIRE-GW-MB.

Setting the watchdog timer

The MODBUS RTU gateway has a built-in watchdog timer, which monitors the data traffic within the MODBUS RTU network. The watchdog timer monitors the interval between two control data write operations. If the interval exceeds the set value, the watchdog triggers an internal error state in the SWIRE-GW-MB, which causes all control data of the SmartWire station to be deleted (logic 0). The control data status (logic 0) remains active until it is set by new write signal.

The timeout value of the watchdog timers can be set with the two register areas 44097 and 44098. Valid time values are written to the least significant byte of the respective register. The watchdog timer has a polling interval of 10 ms. Timeout values of 10 to 2550 ms can be set.

The set time interval is temporarily written to register area 44097. In the event of a power failure ($U_{Gateway}$) this data is deleted. Any data written to the non-retentive memory area (register area 44097) of the SWIRE-GW-MB are also copied to register area 44098, where they are available as read information.

Within register area 44098 the set time interval is retentively stored to remain available after a power failure. The default timeout value is 100 ms.

Access methods to the	The data of the SmartWire stations are mapped to the
register areas	holding register of the SWIRE-GW-MB. Normally, the
_	holding register area can be both read and written to. Some
	data areas (such as the SmartWire stations' status data) are
	read-only. For any write operations to read-only areas the
	MODBUS RTU gateway returns an error code.

Designation **Register** area Access method Abbreviated control data 40001 - 40002 write/read access Complete control data write/read access 40003 - 40006 Abbreviated status data 1 40007 - 40008 read access Check bits 40009 read access Abbreviated status data 2 40010 - 40013 read access Complete status data 40014 - 40077 read access Life bits 40078 read access Manufacturer and device ID 40079 - 40142 read access Number of SmartWire units 40143 read access MODBUS timer (non-retentive) 44097 write/read access MODBUS-Timer (remanent) 44098 write/read access

Table 27: Access methods to the register areas

MODBUS-functions	This section describes the MODBUS functions and the structure of a MODBUS message.
	Structure of a MODBUS message

The MODBUS RTU communication system is based on the master-slave principle: The MODBUS master sends a request message to the MODBUS slave, which - if it is fault-free returns a response message. Request and response messages in MODBUS have the same format.

ID	FC	B ₀	 	Bn	CRClow	CRC _{high}

Slave address (ID)	Address of the MODBUS slave. Broadcast messages (request to all MODBUS slaves) have slave address 0 (zero).
Function code (FC)	Command from the MODBUS master to be executed by the MODBUS slave. For function codes that are not supported, the response message from the MODBUS slave contains the function code of the request message increased by 128 (0x80).
Data bytes (B ₀ – B _n)	User data field For Read commands, the response message contains the content of the queried register area in this field. For Write commands, the request message contains the content of the register to be written in this field.
Checksum (CRC _{low} CRC _{high})	Contains the checksum. The checksum is generated with the CRC 16 method from all previous message bytes (ID to B _n). It is calculated as follows: CRC-16 = ((IDB _n) × 0x100000) mod 0x18005

Figure 13: Structure of a MODBUS message

(register = register address-40001; "minus") Data bytes to be written to the register

Checksum of the request message

Checksum of the response message

Write commands

Write Single Register (0x06) Request message

ID 0x06 REG _{high} REG _{low} D _{high} D _{low} CRC _{low,req}	CRC _{high,req}
--	-------------------------

Response message

ID	0x06	REG _{high}	REGlow	D _{high}	D _{low}	CRC _{low,res}	CRC _{high,res}
-		0x06	Write Singl register	le Register –	Writes to a sing	le read/write	
			REG Register address of the register to			register to be w	ritten to

D

CRC_{req}

Write Multiple Registers (0x16) Request message

ID	0x10	REGhigh	REGlow	N _{high}	Nlow	В	D _{1,high}	
				D _h	igh	D _{low}	CRC _{low,req}	CRC _{high,req}
			Respo	onse me	essage			
ID	0x10	REG _{high}	REGlov	v N _h	igh	N _{low}	CRC _{low,res}	CRC _{high,res}
			_					
			0x10		e Multipl /write reg	0	– Writes to one	e or more
			REG Register address of the lowest regis to (register = register address-4000			to be written		
			Ν	Num	ber of re	gisters to b	e written to	
			В		iber of da high - D _{n,lo}		be written	
			D				to the registers is written to fi	•
			CRC _{req}	Chee	cksum of	the reques	t message	
			CRC _{res}	Chee	cksum of	the respon	se message	

Read commands

Read Holding Register (0x03) Request message

ID 0x03 REG _{high} REG _{low} N _{hig}	h N _{low} CRC _{low,req} CRC _{high,req}
---	---

Response message

ID	0x10	REG _{high}	REGlow	$D_{n,high}$		D _{n,low}	CRC _{low,res}	CRC _{high,res}
			0x03	Read	Holding F	Register		
			REG			ss of the lowes ster address-4		be read out
			Ν	Numb	er of regi	isters to be re	ad out	
			D			sters to be rea ress is read o		egister with
			CRC _{req}	Check	sum of th	he request me	ssage	
			CRC _{res}	Check	sum of th	ne response m	nessage	

MODBUS diagnostic	Diagnostic functions are used to test MODBUS RTU
functions (0x08)	communications. These functions are used with a separate
	function code (0x08). With additional sub-function codes
	various diagnostic function codes can be applied to test
	communications. The MODBUS message for diagnostic
	functions has the following structure:

Request message

D _{low,req}	CRClow,req	CRC _{high,req}

Response message

ID	0x08	FC _{high}	FClow	D _{high,res}	D _{low,res}	CRC _{low,res}	CRC _{high,res}
----	------	--------------------	-------	-----------------------	----------------------	------------------------	-------------------------

0x08	Diagnostics
FC	Function code of diagnostic function
D _{req}	Data field of request message, which can contain additional data
D _{res}	Data field of response message, which can contain return values for the requested diagnostic function

The MODBUS RTU gateway supports the following MODBUS diagnostic functions:

0x00 Return Query Data

With this command the SWIRE-GW-MB returns the message sent by the MODBUS master.

0x01 Restart Communications Option

With this command the MODBUS port of the SWIRE-GW-MB is restarted. If the gateway is in Listen Only state, it is taken out of this state. With additional code 0xFF in data byte $D_{high,res}$ the error states are reset in addition. If power is interrupted, the error counters are reset to zero.

0x02 Return Diagnostic Register The SWIRE-GW-MB does not support diagnostic code 0x02. It responds to this message with a zero.

Operation through MODBUS RTU

0x04 Force Listen Only Mode In Listen Only mode, the MODBUS RTU gateway does not respond to messages from the MODBUS master.

0x0A Clear Counters This command resets the counters for protocol send or receive errors to zero.

 $\mathbf{0x0B}$ Return Bus Message Count Returns the number of recognized MODBUS messages in data field D_{res} of the response message.

0x0C Return Bus Communication Error Count Returns the count for received messages with incorrect CRC checksum.

0x0D Return Bus Exception Error Count Returns the count for messages that the SWIRE-GW-MB has identified as incorrect (for example message with unsupported function codes) and has responded to with an error message.

0x0E Return Slave Message Count Returns the number of messages sent to the SWIRE-GW-MB.

0x0F Return Slave No Response Count Returns the the number of messages that the SWIRE-GW-MB has received but not responded to (for example messages received in Listen Only mode or messages with incorrect checksum).

0x10 Return Slave NAK Count

Returns the number of messages that the gateway has received and responded to with a negative acknowledge (NAK).

0x11 Return Slave Busy Count

Returns the number of messages that the gateway was unable to answer because it was busy processing other instructions. **0x12** Return Bus Character Overrun Count Returns the number of messages that the gateway was unable to answer due to a receive buffer overrun.

The type and number of supported function codes depend on the device used as MODBUS master. The function and diagnostic codes listed here can be called up only if the MODBUS master supports them.

Polling device information for SWIRE-GW-MB

You can call up device information about the MODBUS RTU gateway with function code 0x2B/0x0E. The SWIRE-GW-MB returns the following values in ASCII format:

Vendor name	Eaton	
Device Code	SW-GW-MB	
MajorMinor Revision	VXX.XX	

Diagnostic data

Diagnostics of the SmartWire stations can be performed in a number of ways:

- As long as the SmartWire modules communicate with the gateway they send a status bit, which is included in the full status data. (section "Status bits", page 39)
- The SWIRE-GW-MB monitors the SmartWire stations. It recognizes the failure of any stations and sets the corresponding life bit.
- Failed or faulty SmartWire modules are also included in the parity bits' register area.

Operation through MODBUS RTU

Checking the SmartWire configuration

The SmartWire connection system initializes when the configuration key on the MODBUS RTU gateway is pressed. During this process, addresses are automatically assigned to all stations and their device files are read in to the MODBUS RTU gateway. A correct system initialization can be verified through register areas 40079 to 40142 (manufacturer and device ID) and register 40143 (number of SmartWire stations). Within the manufacturer and device ID register area all stations are listed with the device data that the gateway read during initialization. The number of SmartWire stations that the gateway recognized during its initialization is contained in register 40143. Incorrectly initialized SmartWire stations are not included in the register areas for manufacturer and device ID and for the number of SmartWire stations.

Before operation, read out both register areas and compare them with the physical layout of the SmartWire rung. This will help you identify any faulty modules of communication connections before starting operation. Fault-findingIn addition to diagnostic inspection through the MODBUS
RTU field bus the LEDs of the SmartWire modules and the
MODBUS RTU gateway can be used to locate the fault.

No.	Components	Event	Explanation	Remedy		
1	Gateway	SmartWire LED Flashing	The station's configuration is	Check plug connection		
	SmartWire module	Ready-LED Flashing	incorrect.	 After replacing devices, press configuration key 		
	Following SmartWire modules	Ready-LED Pulse flashing		comgalation hoj		
2	Gateway	Ready-LED OFF	Internal error	Exchange gateway		
		MODBUS-LED Lit or flashing				
3	Gateway	Ready-LED Flashing	No communication through MODBUS	Check MODBUS RTU connection		
		MODBUS-LED OFF	RTU, timeout of watchdog timer or PLC in Stop	 Switch PLC to RUN Match watchdog timer to application 		
4	Gateway	U-Aux-LED OFF	No voltage on the U- Aux terminal	Check the power supply, wiring and fusing for the supply voltage to the contactor coils		

Table 28: Error messages

07/09 MN03407002Z-EN

5 Appendix

Technical data Ge	eneral	
Standards		
General		IEC/EN 60947, EN 55011, EN 55022 IEC/EN 61000-4, IEC/EN 60068-2-27
Mounting		Top-hat rail IEC/EN 60715 (35 mm)
Dimensions (W \times H \times D)	mm	35 × 90 × 109
Weight	kg	0.14
Terminal capacity		
solid	mm ²	0.5 - 1.5
flexible with ferrule	mm ²	0.5 - 1.5
Solid or stranded	AWG	22 - 16
Standard screwdriver	mm	3.5 × 0.8
Max. tightening torque	Nm	0.6
Ambient climatic conditions		
Ambient temperature		
Operation	°C	-25 - +55
Storage	°C	-25 - +70
Condensation		Prevent condensation by means of suitable measures
Relative humidity, non-condensing (IEC/EN 60068-2-30)	%	5 - 95
Air pressure (in operation)	hPa	795 - 1080
Ambient mechanical conditions		
Protection type (IEC/EN 60529)		IP20
Pollution degree		2
Mounting position		Vertical

Electromagnetic compatibility (E	MC)		
Electrostatic discharge (IEC/EN 61000-4-2, Level 3, ESD)			
Air discharge		kV	8
Contact discharge		kV	6
Electromagnetic fields (IEC/EN 61000-4-3, RFI)	V/m		10
Radio interference suppression (EN 55011, EN 55022)			Class A
Burst pulses (IEC/EN 61000-4-4, level 3)			
Supply cables	·	kV	2
Signal cables		kV	2
High-energy pulses (surge) (IEC/EN 61000-4-5, Level 2)		kV	0.5 (supply cables, symmetrical)
Immunity to line-conducted interference to (IEC/EN 61000-4-6)		V	10
Insulation resistance			
Clearance in air and creepage distances			EN 50178, EN 60947-1, UL 508, CSA C22.2 No 142
Insulation resistance	·		EN 50178, EN 60947-1
Voltage supply, Gateway electron station electronics U _{Gateway}	ic and Srr	nart-Wire	
Rated operating voltage U _{Gateway}		V DC	24 (-15 %, +20 %)
permissible range			20.4 - 28.8
Residual ripple		%	≦ 5
Maximum current consumption at 24 V DC		mA	350 (typically 110 gateway + typically 15 per SmartWire module)
Voltage dips (IEC/EN 61131-2)		ms	10
Heat dissipation at 24 V DC	. <u> </u>	W	normally 6
Protection against polarity reversal			yes
Short-circuit protection SmartWire side			yes

Power supply U _{AUX} (power supply for swi SmartWire elements, e.g. contactor coils)	-	
Rated operational voltage U _{AUX}	V DC	24 (15 %, +20 %) (Derating from > 40 °C)
permissible range	V DC	20.4 - 28.8 at 45 °C: 21 - 28.8 at 50 °C: 21.6 - 28.8 at 55 °C: 22.2 - 27.6
Input current U _{AUX} at 24 V DC	А	Normally 3
Residual ripple	%	≦ 5
Voltage dips (IEC/EN 61131-2)	ms	10
Protection against polarity reversal		yes
Short-circuit protection SmartWire side		No, external fuse 3 A or FAZ-Z3 necessary

LED indicators

Ready for operation	Ready: green
Power supply SmartWire contactors	U _{Aux} : green
MODBUS-RTU status	MODBUS RTU: yellow
Status SmartWire	SmartWire: green

MODBUS-RTU

Connection	SUB-D 9-pole, socket
Communication standard	RS232 or RS485
Station address	1 - 125
Address allocation	DIP switches
Protocol settings	DIP switches

Potential isolation		
for supply voltage U _{AUX}	yes	
for supply voltage U _{Gateway}	yes	
To SmartWire	yes	
Function	MODBUS master slave	
Bus protocol	MODBUS-RTU	
Bus terminating resistors	External connection	
Baud rate	9.6, 19.2, 38.4 or 57.6 kbits/s, set with DIP switch	

Connection system SmartWire

Connection		Plug, 6-pole
Data/power cable		6 core flat-band cable
maximum cable length, SmartWire system	m	4 m
Bus termination		no
Station address		Automatic assignment
Station		max. 16
Address allocation		None
Potential isolation		
for supply voltage U _{AUX}		no
for supply voltage U _{Gateway}		no

07/09 MN03407002Z-EN

Index

В	Baud rate	
	Setting	11
	Baud rates	21
	Bit representation	
	Abbreviated	31
	Complete	
C	Cable lengths	21
	CFG-byte	
	Check bits	
	Connect connection cable	
	Control data	
D	Diagnostics functions	49
	DIP switches	
Е	EMC compliance	
	EMC-conformant wiring of the network	19
	Error messages	53
F	Fault-finding	
	Function codes	49
Η	Holding register	28
Ī	Input-register	
L	LEDs	
	Life bits	39

М	Manufacturer and device ID	40
	diagnostics functions	49
	MODBUS telegram	
	MODBUS-RTU	5
	MODBUS-RTU-LED	25
	MODBUS-RTU-Master	
	configuration	27
P	Parity	
	setting	11
	Pin functions	
	Potential separation	21
R	Read commands	
	Ready-LED	24
	Register areas	
	RS232	
	max. cable length	21
	RS485	17
	max. cable length	21
S	Set station address	11
	Shielding	
	SmartWire	
	SmartWire LED	
	SmartWire module I/O	
	Standards	55
	Starting	
	First time	
	Station address	
	Status bits	
	Status data for SWIRE-4DI-2DO-R	
	Status LEDs	
	Supply voltage, Connecting	
	SWIRE-GW-MB	5

T	Technical data Terminating resistor	
U	U-Aux-LED	24
W	Watchdog-timer Write commands	