
PPSS4400__LLIINNKK VV33..2200
DDiirreecctt ccoommmmuunniiccaattiioonn
bbeettwweeeenn PPCC aanndd PPLLCC

32 bit DLL for PS40_LINK communication between Moeller
PS4/PS416 PLCs and PCs running Windows 95/98/NT

Release date: 16 Jan 2001

 PS40_LINK: PLC – PC communication Page 2 of 24

TTaabbllee ooff ccoonntteennttss

Introduction ... 3
Function overview... 4
Quick start ... 4
Reference of the PS40_LINK functions 8

getSucomVersion ..8
getVersion ...8
writeDataToPLC ..9
readDataFromPLC ..10
writeDataToPLCex ..11
readDataFromPLCex...12
setPLCType...14
openComDevice ..15
closeComDevice..15
setSucomOptions ..16

Specify connection parameter ... 19
Technical data ... 22
Data sheet .. 23
Error codes.. 24

 PS40_LINK: PLC – PC communication Page 3 of 24

IInnttrroodduuccttiioonn
Most industrial applications that are controlled by PLCs require some user interaction in order
to collect data, change parameters or to simply operate a machine. In many cases this task
can be solved by connecting HMI devices, like the MV4 series from Moeller, to the PLC.
Sometimes this is too expensive or not flexible enough.

On the other hand, user interaction can be realized comfortably with PCs which are
connected to the PLC. A lot of dedicated visualization software packages are available on the
market. The drawback is that these packages are mostly very expensive and sometimes still
not flexible enough.

The new PS40_LINK DLL opens up a new and inexpensive alternative. By using
PS40_LINK, standard PC software like Visual Basic, Visual C, Delphi or even MS-EXCEL
can be used to create user interfaces for the PLC user interaction or for the visualization of
PLC data.

PS40_LINK is a bundle of functions which can be called from e.g. Visual Basic. Each
function has a set of call-parameters and return-parameters. These parameters and the
functions are explained in this documentation.

For installation of PS40_LINK copy the DLL file “sucoma32.dll” in the folder containing your
application or in the Windows system folder. Use the appropriate function declarations in your
application or Visual Basic program just by using “cut-and-paste” from the file
“PS40_LINK_API.txt” which contains all function declarations, error codes and other useful
constants.

The new features for Version 3.0 are:
- Up to 490% faster when compared to V2.x (see chapter “Technical data” for more details)
- Selectable baudrate parameter for PS4-341-MM1 and PS416 PLC (See reference of

openComDevice on page 14.
- Platform for further companion products (like modem connections)
- Brief discussion of performance parameters

The new features for Version 3.10 are:
- Platform for remote TCP/IP connections. You need the additional product

“PS40_TCPIP_Link” to use this feature.

The new features for Version 3.20 are:
- Automatic baudrate setting for PS4-341-MM1 and PS416 PLC over remote TCP/IP

connections.
- Minor documentation improvements

 PS40_LINK: PLC – PC communication Page 4 of 24

FFuunnccttiioonn oovveerrvviieeww
Basic functions:

Function name Description
GetSucomVersion Returns the version of the PS40_LINK product
GetVersion Returns the version of the PS40_LINK Extension products (e.g.

PS40_Modem_Link.dll)
WriteDataToPLC Writes one single data element to the PLC marker range
ReadDataFromPLC Reads one single data element from the PLC marker range

Advanced functions:

Function name Description
WriteDataToPLCex Writes a variable amount of data elements to the PLC marker range
ReadDataToPLCex Reads a variable amount of data elements from the PLC marker

range
SetPLCType This function sets the PLC type for all subsequent function calls
OpenComDevice Accelerator for read/write functions. This function opens and

initializes a COM port interface of the PC.
CloseComDevice Close the previously opened PC COM port.
SetSucomOptions Set optional parameters for the operation of the PS40_LINK product

QQuuiicckk ssttaarrtt

The easiest way to learn to use the PS40_LINK is to follow this little example. It explains
how to use the functions from within VBA (Visual Basic for Applications).

VBA is a core part of Microsoft EXCEL 95/97, WORD 95/97 and ACCESS 95/97. It can be
used to write macros, programs or new EXCEL spreadsheet functions. The VBA editor can be
opened from the EXCEL TOOLS menu:

 PS40_LINK: PLC – PC communication Page 5 of 24

The VBA screen looks like this:

The PLC detects external events and adds a time and date stamp to store these events in a
stack (The entire example can be found on the accompanying disk.). By using the function
readDataFromPLCex these events are transmitted into the PLC and displayed in an EXCEL
spreadsheet.

The function writeDataToPLC is used to organize the handshake communication between
the PLC user program and the VBA program1.

Private Declare Function getSucomVersion Lib "sucoma32.dll" _
 (ByVal xpVersionBuffer As String) As Integer

Private Declare Function readDataFromPLCex Lib "sucoma32.DLL" _
 (ByVal xpComDevice As String, _
 ByVal xwPortID As Long, _

 ByVal xpDataType As String, _
 ByVal xwStartAddress As Integer, _
 ByVal xwNumberOfElements As Integer, _
 ByRef xpReadData As Any) As Integer

1 In Visual Basic one instruction can be spread over multiple lines by using the characters SPACE + UNDERSCORE
to connect the lines.

 PS40_LINK: PLC – PC communication Page 6 of 24

Private Declare Function writeDataToPLC Lib "sucoma32.DLL" _
 (ByVal xpComDevice As String, _

 ByVal xpDataType As String, _
 ByVal xwStartAddress As Integer, _
 ByRef xpDataToSend As Any) As Integer

The declarations above are necessary to register the DLL functions with VBA. It also shows
which parameters are necessary and what datatype they have.

All results of PS40_LINK functions are 16 bit values. The declaration for the result variable in
VBA is accordingly:

Dim wResult As Integer

In the PLC the data set to be read consists of 9 elements. Each element is a 16 bit integer
number. The data set is organized as follows:

Element 1: actual event number
Element 2: timestamp – seconds
Element 3: timestamp – minutes
Element 4: timestamp – hour
Element 5: datestamp – day
Element 6: datestamp – month
Element 7: datestamp – year
Element 8: reserved
Element 9: total number of events still stored in PLC

The easiest way to allocate the target memory in the PC is to declare an array of the
appropriate size:

Dim MarkerValue(9) As Integer

Since VBA is an event oriented programming language, the user has to create an event in
order to initiate the execution of the VBA program. One possible event could be to click a
button on a spreadsheet. Creating a button on a spreadsheet is very easy:

After right clicking on the EXCEL toolbar area a menu appears that allow to add new toolbars.
Please select the FORMS toolbar:

Now it is possible to drag & drop a button from the toolbar on a spreadsheet. A VBA function
(Button1_Click) is created automatically and can be edited in the VBA editor. Each time this
new button on the spreadsheet is being clicked, this function will be executed.

The user program has first to check if the DLL version (at least version V2.00) is correct. The
function getSucomVersion requires a pointer to a string as a call parameter2.

Dim aVersion As String*32

Sub Button1_Click ()

 aVersion = " "
 wResult = getSucomVersion(aVersion)
 If wResult < 200 Then

' wrong version
Msgbox “Data access not possible. Please upgrade to a newer DLL version.”
Exit Sub

 End If

2 In VBA and VB, strings are always pointers (ByRef) even if they are declared ByVal in the prototype declaration.

 PS40_LINK: PLC – PC communication Page 7 of 24

Now the program reads the first dataset (9 elements), located in the PLC at markerword MW0.
The elements in the PLC have the datatype WORD and will be stored in the previously created
array MarkerValue.

wResult = readDataFromPLCex (
xpComDevice := "COM1", _ 'communication via COM1
xwPortID := 0, _ 'default
xpDataType := "WORD", _ ' interpret incoming data as WORD
xwStartAddress := 0, _ ' Startaddress in PLC = MW0
xwNoOfElements := 9, _ ' read 9 elements
xpReadData := MarkerValue(0)) ' target memory location

The functions call was successful only if the return parameter wResult has a value of zero.

If wResult <> 0 Then
' Error
MsgBox “Communication Error. See errorcode: “ & wResult
Exit Sub

End If

The PLC program requires a rising edge in markerword MW18. This causes the PLC program
to replace the actual (which is the oldest event) event with the next younger event in the
stack. The function writeDataToPLC is used to first write the value 0 and then the value 1 to
MW18, thus generating the rising edge. (It can be assumed that the PLC program is fast
enough so that this sequence will be interpreted as rising edge.)

wResult = writeDataToPLC (
xpComDevice := "COM1", _
xpDataType := "WORD", _
xwStartAddress := 18, _
xpDataToSend := 1)

wResult = writeDataToPLC (
xpComDevice := "COM1", _
xpDataType := "WORD", _
xwStartAddress := 18, _
xpDataToSend := 0)

The easiest way to show these results in EXCEL is to write them into spreadsheet cells. It is
then easy to create charts and graphs once the information is organized in a table. In order to
organize the dataset in a table on Sheet 1, the following VBA commands could be used:

Dim I As Integer
For I = 0 To 8

ThisWorkbook.Worksheets(“Sheet1”).Range(“A1”).Offset(0,I).value = MarkerValue(I)
Next I
End Sub

The entire example can be found on the accompanying disk.

 PS40_LINK: PLC – PC communication Page 8 of 24

RReeffeerreennccee ooff tthhee PPSS4400__LLIINNKK ffuunnccttiioonnss
The gray boxes in this chapter contain the function declarations for Visual Basic or VBA. The
other declarations are described in C/C++ syntax.

ggeettSSuuccoommVVeerrssiioonn

Description: Reads the actual version of PS40_LINK.
Call parameters:

char* xpVersionBuffer If the pointer is not equal null, the DLL version text is being copied to this
pointer location. The minimum length of the buffer is 32 characters!
The version string use the following format:

[Name of the DLL/Extension] [Version] [Release date]
The next line is an example for the basic PS40_Link DLL:

PS40_Link V3.20 Jan 3 2001

Return value:
The version of the DLL as numerical value. E.g. version 3.20 is 320

ggeettVVeerrssiioonn

Description: Reads the actual version of PS40_LINK and all Extension DLLs.
Call parameters:

Char* xpExtensionName Description of the PS40_LINK Extension name. The following Extension
names are supported:
“SUCOMA32”: The basic PS40_LINK DLL
“MODEM_LINK”: The Modem Extension DLL
“TCPIP_LINK: The TCP/IP Extension DLL
“TRANSFER_LINK”:The Download Extension DLL
If the pointer is Null, the basic PS40_LINK version number is returned.

Char* xpVersionBuffer If the pointer is not equal null, the Extension version text is being copied to
this pointer location. The minimum length of the buffer is 32 characters!
The version string use the following format:

[Name of the DLL/Extension] [Version] [Release date]
The next line is an example for the basic PS40_Link DLL:

PS40_Link V3.20 Jan 3 2001

Return value: The version of the PS40_LINK Extension as numerical value. E.g. version
3.20 is 320 or Error code – see reference.

Private Declare Function getSucomVersion Lib “ sucoma32.dll”_
(ByVal xpVersionBuffer As String) As Integer

Private Declare Function getVersion Lib “ sucoma32.dll”_
(ByVal xpExtensionName As String,_
 ByVal xpVersionBuffer As String) As Integer

 PS40_LINK: PLC – PC communication Page 9 of 24

wwrriitteeDDaattaaTTooPPLLCC

Description: Writes one data element to the PLC marker range via serial interface.
Call parameters:

Char* xpComDevice Description of the name of the serial PC interface. All serial interfaces
supported by Windows can be used. Usually this is “COM1”, “COM2”,
“COM3” and “COM4” (Note: No ending colon!) Additionally you are able to
select a baudrate value, other than the default 9600 baud as well as other
connection parameters. See chapter “Specify connection parameter” for
more information.

char* xpDataType This parameter allows specifying the datatype which is required in the PLC
user program. Although each data element is stored within Visual Basic as
32 bit variable, it might be appropriate for the PLC to receive only part of
the information – e.g. the first bit – in order to save PLC memory and to
simplify the PLC program. In addition to this, Visual Basic interprets the bit-
pattern for negative numbers differently than the PLC.
The following parameters convert 32 bit VBA data elements (VBA datatype
long) into correct PLC datatypes:

VBA Long3 => PLC BYTE: “VBBYTE”
VBA Long => PLC WORD: “VBWORD”

VBA Long => PLC SINT: “VBSINT”
VBA Long => PLC USINT: “VBUSINT”
VBA Long => PLC INT : “VBINT”
VBA Long => PLC UINT : “VBUINT”
VBA Long => PLC DINT : “VBDINT”
VBA Long => PLC UDINT: “VBUDINT”

The following datatypes can be used if the source data is not of type long.

VBA Byte5 => PLC BYTE: “BYTE”
VBA Integer6 => PLC WORD: “WORD”
VBA Long => PLC DINT: “LONG”

Unsigned short xwStartAddress This parameter contains the start address (e.g. markerword) for the target
memory in the PLC. Please consider the following specialties:
PLC type 3: The maximum PLC memory available is 2172 markerwords.
Do not overwrite PLC memory beyond this limit.
PS316: The PS316 has a logical limitation at the markerword 124
(MW124.0). It is not allowed to overwrite this limit. Eventually two write
tasks have to be performed.
PLC type 5: Addresses outside the range of 8 to 66 are not allowed.
PLC type 7: The available PLC marker range has to be defined within the
S40 (program generation). Addresses outside this range are not allowed.

Void* xpDataToSend Points to the source data in the calling program.

Return value:
Error code – see reference (0 if data transfer ok!)

3 VBA long = C/C++ int, unsigned int
4 VBA long = C/C++ int, unsigned int
5 VBA Byte = C/C++ char, unsigned char
6 VBA Integer = C/C++ short, unsigned short

Private Declare Function writeDataToPLC Lib “sucoma32.dll” _
(ByVal xpComDevice As String,_

 ByVal xpDataType As String,_
 ByVal xwStartAddress As Integer,_
 ByRef xpDataToSend As Any) As Integer

 PS40_LINK: PLC – PC communication Page 10 of 24

rreeaaddDDaattaaFFrroommPPLLCC

Description: Reads one data element from the PLC marker range via serial interface.
Call parameters:

Char* xpComDevice Description of the name of the serial PC interface. All interfaces supported
by Windows can be used. Usually this is “COM1”, “COM2”, “COM3” and
“COM4” (Note: No ending colon!) Additionally you are able to select a
baudrate value other than the default 9600 baud as well as other
connection parameters. See chapter “Specify connection parameter” for
more information.

char* xpDataType This parameter allows specifying the datatype which is used in the PLC
user program. Although each data element is stored within Visual Basic as
32 bit variable, the PLC uses different datatypes. In addition to this, Visual
Basic interprets the bit-pattern for negative numbers differently than the
PLC.
The following parameters converts PLC datatypes into correct 32 bit VBA
data elements (VBA datatype long):
PLC BOOL => VBA Long7: “VBBOOL”8

PLC BYTE => VBA Long: “VBBYTE”
PLC WORD => VBA Long: “VBWORD”

PLC SINT => VBA Long: “VBSINT”
PLC USINT => VBA Long: “VBUSINT”
PLC INT => VBA Long: “VBINT”
PLC UINT => VBA Long: “VBUINT”
PLC DINT => VBA Long: “VBDINT”
PLC UDINT => VBA Long: “VBUDINT”

The following datatypes can be used if the destination data in the PC is not
of type long.
PLC BOOL => VBA Boolean9: “BOOL” 8

PLC BYTE => VBA Byte10: “BYTE”
PLC WORD => VBA Integer11: “WORD”
PLC DINT => VBA Long: “LONG”

Unsigned short xwStartAddress This parameter contains the start address (e.g. markerword) for the source
memory in the PLC. Please consider the following specialties:
PLC type 3: The maximum PLC memory available is 2172 markerwords.
Do not try to read PLC memory beyond this limit.
PS316: The PS316 has a logical limitation at the markerword 124
(MW124.0). It is not allowed to read over this limit with the same function
call. Eventually two read calls have to be performed.
PLC type 5: Addresses outside the range of 8 to 66 are not allowed.
PLC type 7: The available PLC marker range has to be defined within the
S40 (program generation). Addresses outside this range are not allowed.

void* xpReadData Points to the target memory area in Visual Basic. Usually this is a variable
or an array of the appropriate size.
CAUTION: If not enough memory is available in the PC program, the PC
very likely will crash!

Return value:
Error code – see reference (0 if data transfer ok!)

7 VBA long = C/C++ int, unsigned int
8 See Handling issues at the end of the chapter readDataFromPLCex
9 VBA Boolean = C/C++ short
10 VBA Byte = C/C++ char, unsigned char
11 VBA Integer = C/C++ short, unsigned short

Private Declare Function readDataFromPLC Lib “sucoma32.dll”_
(ByVal xpComDevice As String,_
 ByVal xpDataType As String,_

 ByVal xwStartAddress As Integer,_
 ByRef xpReadData As Any) As Integer

 PS40_LINK: PLC – PC communication Page 11 of 24

wwrriitteeDDaattaaTTooPPLLCCeexx

Description: Writes multiple data elements to the PLC marker range via serial interface.
Call parameters:

char* xpComDevice Description of the name of the serial PC interface. All serial interfaces
supported by Windows can be used. Usually this is “COM1”, “COM2”,
“COM3” and “COM4” (Note: No ending colon!) If the COM port has been
opened via xwPortID parameter, then this parameter is the NULL pointer.
Additionally you are able to select a baudrate value other than the default
9600 baud as well as other connection parameters. See chapter “Specify
connection parameter” for more information.

int xwPortID If this value is zero, then the serial COM interface will be opened and
closed for each function call automatically.
If the COM port is required for a longer time period, then this parameter
should contain the handle to a COM interface that has been opened
previously with the function openComDevice. The port has to be closed
later manually with the function closeComDevice.

char* xpDataType This parameter allows specifying the datatype which is required in the PLC
user program. Although each data element is stored within Visual Basic as
32 bit variable, it might be appropriate for the PLC to receive only part of
the information – e.g. the first bit – in order to save PLC memory and to
simplify the PLC program. In addition to this, Visual Basic interprets the bit-
pattern for negative numbers differently than the PLC.
The following parameters convert 32 bit VBA data elements (VBA datatype
long) into correct PLC datatypes:
VBA Long => PLC BYTE: “VBBYTE”
VBA Long => PLC WORD: “VBWORD”
VBA Long12 =>PLC SINT: “VBSINT”
VBA Long => PLC USINT: “VBUSINT”
VBA Long => PLC INT : “VBINT”
VBA Long => PLC UINT : “VBUINT”
VBA Long => PLC DINT : “VBDINT”
VBA Long => PLC UDINT: “VBUDINT”
The following datatypes can be used if the source data is not of type long.
VBA Byte13 => PLC BYTE: “BYTE”
VBA Integer14 => PLC WORD: “WORD”
VBA Long => PLC DINT: “LONG”

unsigned short xwStartAddress This parameter contains the start address (e.g. markerword) for the target
memory in the PLC. Please consider the following specialties:
PLC type 3: The maximum PLC memory available is 2172 markerwords.
Do not overwrite PLC memory beyond this limit.
PS316: The PS316 has a logical limitation at the markerword 124
(MW124.0). It is not allowed to overwrite this limit. Eventually two write
tasks have to be performed.
PLC type 5: Addresses outside the range of 8 to 66 are not allowed.
PLC type 7: The available PLC marker range has to be defined within the
S40 (program generation). Addresses outside this range are not allowed.

unsigned short xwNoOfElements Specifies the number of data elements that are transferred into the PLC.
The maximum number of elements that can be transfered depends only on
the PLC type and the marker declarations.

Void* xpDataToSend Points to the source data in the calling program. The size of the defined
memory location must be as least as big as specified with the parameter
NoOfElements.

Return value: Error code – see reference (0 if data transfer ok!)

12 VBA long = C/C++ int, unsigned int
13 VBA Byte = C/C++ char, unsigned char
14 VBA Integer = C/C++ short, unsigned short

Private Declare Function writeDataToPLCex Lib “sucoma32.dll”_
(ByVal xpComDevice As String,_
 ByVal xwPortID As Long,_
 ByVal xpDataType As String,_

 ByVal xwStartAddress As Integer,_
 ByVal xwNoOfElements As Integer,_

 ByRef xpDataToSend As Any) As Integer

 PS40_LINK: PLC – PC communication Page 12 of 24

rreeaaddDDaattaaFFrroommPPLLCCeexx

Description: Reads multiple data element from the PLC marker range via serial
interface.

Call parameters:
Char* xpComDevice Description of the name of the serial PC interface. All serial interfaces

supported by Windows can be used. Usually this is “COM1”, “COM2”,
“COM3” and “COM4” (Note: No ending colon!) If the COM port has been
opened via xwPortID parameter, then this parameter is the NULL pointer.
Additionally you are able to select a baudrate value other than the default
9600 baud as well as other connection parameters. See chapter “Specify
connection parameter” for more information.

int xwPortID If this value is zero, then the serial COM interface will be opened and
closed for each function call automatically.
If the COM port is required for a longer time period, then this parameter
should contain the handle to a COM interface that has been opened
previously with the function openComDevice. The port has to be closed
later manually with the function closeComDevice.

char* xpDataType This parameter allows specifying the datatype which is used in the PLC
user program. Although each data element is stored within Visual Basic as
32 bit variable, the PLC uses different datatypes. In addition to this, Visual
Basic interprets the bit-pattern for negative numbers differently than the
PLC.
The following parameters converts PLC datatypes into correct 32 bit VBA
data elements (VBA datatype long):

PLC BOOL => VBA Long15: “VBBOOL”16

PLC BYTE => VBA Long: “VBBYTE”
PLC WORD => VBA Long: “VBWORD”
PLC SINT => VBA Long: “VBSINT”
PLC USINT => VBA Long: “VBUSINT”
PLC INT => VBA Long: “VBINT”
PLC UINT => VBA Long: “VBUINT”
PLC DINT => VBA Long: “VBDINT”
PLC UDINT => VBA Long: “VBUDINT”

The following datatypes can be used if the destination data in the PC is not
of type long.

PLC BOOL => VBA Boolean17: “BOOL” 16

PLC BYTE => VBA Byte18: “BYTE”
PLC WORD => VBA Integer19: “WORD”
PLC DINT => VBA Long: “LONG”

15 VBA long = C/C++ int, unsigned int

16 See Handling issues at the end of this chapter

17 VBA Boolean = C/C++ short
18 VBA Byte = C/C++ char, unsigned char
19 VBA Integer = C/C++ short, unsigned short

Private Declare Function readDataFromPLCex Lib “sucoma32.dll”_
(ByVal xpComDevice As String,_
 ByVal xwPortID As Long,_

 ByVal xpDataType As String,_
 ByVal xwStartAddress As Integer,_

 ByVal xwNoOfElements As Integer,_
 ByRef xpReadData As Any) As Integer

 PS40_LINK: PLC – PC communication Page 13 of 24

unsigned short xwStartAddress This parameter contains the start address (e.g. markerword) for the source
memory in the PLC. Please consider the following specialties:
PLC type 3: The maximum PLC memory available is 2172 markerwords.
Do not try to read PLC memory beyond this limit.
PS316: The PS316 has a logical limitation at the markerword 124
(MW124.0). It is not allowed to read over this limit with the same function
call. Eventually two read calls have to be performed.
PLC type 5: Addresses outside the range of 8 to 66 are not allowed.
PLC type 7: The available PLC marker range has to be defined within the
S40 (program generation). Addresses outside this range are not allowed.

unsigned short xwNoOfElements Specifies the number of data elements that are transferred from the PLC.
The maximum number of elements that can be transferred depends only on
the PLC type and the marker declarations.

void* xpReadData Points to the target memory area in the calling program. Usually this is a
variable or an array of the appropriate size.
CAUTION: If not enough memory is available in the PC program, the PC
very likely will crash!

Return value:
Error code – see reference (0 if data transfer ok!)

Handling issues for BOOL and VBBOOL datatypes:

- It is not possible to read single BOOL markers from the PLC
- The functions readDataToPLC and readDataToPLCex always read and stores quantities

of eights BOOL markers because the smallest entity which can be transferred from the
PLC is a single byte.

- The amount of bytes actually transferred can be calculated with the following formula:
NoOfTransferredBytes = (NoOfBoolMarkers - 1)/8 + 1

If you want to read for example nine BOOL markers, then two bytes are read from the
PLC.

- The amount of transferred and stored BOOL marker depends solely on the amount of
transferred bytes (see previous note). Please allocated eight data elements in your
program per transferred byte. For example:
You want to read one BOOL marker with the VBBOOL datatype. Than the functions reads
one byte and stores eight VBA long elements in your target memory. Because of that, you
have to declare at least the following array: Dim TargetArray(8) As Long

- BOOL markers are stored in the following manner (two byte/16 bool markers are read and
stored in the target array in your application program):

Byte 0 Byte 1

PLC BOOL markers:

PC TargetArray():

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 PS40_LINK: PLC – PC communication Page 14 of 24

sseettPPLLCCTTyyppee

Description: Set the PLC type for all subsequent function calls, if you use a PS3xx or a
PS4-101/111

Call parameters:
unsigned short xwPLCType The target PLC type has to be specified by this parameter. The following

constants are applicable:
PS306, PS316, (PS416) : 3
PS3, PS4-101, PS4-111 : 5
PS4-141, PS4-151, PS4-201, PS4-271, PS4-341, PS416-CPU-
200/300/400 : 7
After calling this function all other PS40_LINK function assumes the
specified PLC type. The default type is ´7´ which is applicable to all PS4
PLC´s except the PS4-101/111. So, you need to call this function only if
you use an PS3xx or PS4-101/111 PLC (type 3 or 5).
The use of constants for the PLC types in your program helps getting an
easier reading of your program code.

Return value:
Error code – see reference (0 if data transfer ok!)

Private Declare Function setPLCType Lib “sucoma32.dll”_
(ByVal xwPLCType As Integer) As Integer

 PS40_LINK: PLC – PC communication Page 15 of 24

ooppeennCCoommDDeevviiccee

Description: Opens and initializes a COM port to accelerate the functions
readDataFromPLCex and writeDataToPLCex for extensive usage. Multiple
COM ports can be opened and therefor multiple PLC connections can be
established at the same time.

Call parameters:
char* xpComDevice Description of the name of the serial PC interface. All serial interfaces

supported by Windows can be used. Usually this is “COM1”, “COM2”,
“COM3” and “COM4” (Note: No ending colon!)
Additionally you are able to select a baudrate value other than the default
9600 baud as well as other connection parameters. See chapter “Specify
connection parameter” for more information.

Int* xwPortID After a successful function call this parameter contains a handle to the
specified COM port.

Return value:
Error code – see reference (0 if data transfer ok!)

cclloosseeCCoommDDeevviiccee

Description: Closes a COM port that has been opened previously with the function
openComDevice.

Call parameters:
int xwPortID The port handle which has been obtained with the function call

openComDevice.

CAUTION: If Visual Basic is being terminated without closing all COM
ports, then these ports are not available for other Windows applications.

Return value:
Error code – see reference (0 if data transfer ok!)

Private Declare Function openComDevice Lib “sucoma32.dll”_
(ByVal xpComDevice As String,_
 ByRef xwPortID As Long) As Integer

Private Declare Function closeComDevice Lib “sucoma32.dll”_
(ByVal xwPortID As Long) As Integer

 PS40_LINK: PLC – PC communication Page 16 of 24

sseettSSuuccoommOOppttiioonnss

Private Declare Function setSucomOptions Lib "sucoma32.dll"_
 (ByVal xpOptionName As String,_

 ByVal wOptionValue As Long) As Integer

Description: Set specific PS40_LINK options through individual option names and values.
Call parameter:

char* xpOptionName The desired option has to be named by this parameter. The following
option-names are applicable for this PS40_LINK version:
MODEM_CALLBACK

With this option you define an application specific callback function, which is called
everytime in the lifetime of a remote modem session, when a state change occurs,
e.g. from „proceeding“ to „connect“. The parameter wOptionValue has to point to (or
address) a callback function. Once set, this parameter remains valid during the
whole usage of PS40_LINK and can be disabled through a call to this function with
option-value NULL. To receive all state-changes you have to activate this option
before you open a remote connection.
The callback function must have the following prototype, whereas the name of the
function is to your liking:

Public Function ShowModemProgress(ByVal xwProgress As Long) As Long

The callback function can be called with the following constants for the parameter
xwProgress:
MODEM_DIAL_TONE

1 => A dial tone is detected
MODEM_DIALING

2 => The phone number will be dialed
MODEM_PROCEEDING

3 => The call is under way
MODEM_CONNECT

4 => A successful connection is established
MODEM_DISCONNECT

5 => The line is disconnected (remote or local)
MODEM_NO_CONNECTION

6 => No connection could be established (The appropriate function (e.g.
openComDevice) will return with an error code.

This function could be called, even when no active PS40_LINK call is under way.
The function should always return the value 0.

Note: This option applies only to remote modem connection.

 PS40_LINK: PLC – PC communication Page 17 of 24

TCPIP_CALLBACK

With this option you define an application specific callback function, which is called if
a remote TCP/IP session should be established and the automatic baudrate setting
sequence is to be activated. The parameter wOptionValue has to point to (or
address) a callback function. Once set, this parameter remains valid during the
whole usage of the PS40_LINK and can be disabled through a call to this function
with option-value NULL.

The callback function must have the following prototype, whereas the name of the
function is to your liking:

Public Function ShowTCPIPConnection(ByVal xwProgress As Long) As Long

The callback function can be called with the following constants for the parameter
xwProgress:

TCPIP_OPEN_SEQ
1 => A Ethernet/Serial gateway is detected and a try to open the PLC
connection with the given baudrate (specified in the connection parameter
string) will be made when the callback function returns with zero.

TCPIP_START_SEQ
2 => A connection to the PLC with the given baudrate could not be
established. If the callback function returns with zero the automatic
baudrate setting sequence will be activated.

TCPIP_END_SEQ
3 => The baudrate setting sequence succeeds and a connection to the
PLC with the given baudrate (specified in the connection parameter
string) is established.

TCPIP_SEQ_FAILED
4 => The baudrate setting sequence fails and no connection to the PLC
could be established. Possible reasons are:

- PLC not connected to the gateway,
- wrong or faulty cable,
- faulty serial gateway interface,
- given baudrate not supported by the PLC,
- PLC is set to a baudrate not supported by the gateway

2400, 4800, 9600, 19200, 38400, 57600
The baudrate setting sequence is active with the given baudrate value
xwProgress

This functions could be called, even when no active PS40_LINK call is under way.
The function should always return the value 0. If this function return a non-zero
value, the baudrate sequence will be canceled and the PS40_LINK operation (e.g.
(openComDevice) will return with the error code SUCOM_BREAK_BY_USER (15).

Note: This option applies only to remote TCP/IP connections.

int wOptionValue This parameter set the current value of the selected option. The meaning is
option specific. See description of supported options above.

Return value: Error code – see reference
SUCOM_OK (0): Option setting is ok!
SUCOM_PARAMETER_ERROR (5): Option or option value is invalid.

 PS40_LINK: PLC – PC communication Page 18 of 24

Visual Basic example to setup the TCP/IP progress function:

´Declare the function „setSucomOptions“ as follows
Private Declare Function setSucomOptions Lib "sucoma32.dll" (ByVal xpOptionName As
String, ByVal xwOptionValue As Long) As Integer

´Set the adress of your TCP/IP progress function, with the name „ShowTCPIPConnection“
´Set the TCPIP_CALLBACK option before you open the device !!!
 wResult = setSucomOptions("TCPIP_CALLBACK", AddressOf ShowTCPIPConnection)

´This is the declaration of your modem progress function
´Use the parameter „xwProgress“ to select the actual state of the TCP/IP connection
Public Function ShowTCPIPProgress(ByVal xwProgress As Long) As Long

Dim wResult As Integer

ShowTCPIPProgress = 0

 Select Case xwProgress
 Case TCPIP_OPEN_SEQ

 Form1.Caption = "Baudrate Wizard: Try to connect with Cobox...."
 Form1.MousePointer = vbHourglass
 Case TCPIP_START_SEQ

wResult = MsgBox("No connection could be established !" + vbCrLf + "Do
you want to start the Baudrate setting sequence ?",
vbYesNo+vbQuestion+bMsgBoxSetForeground, "Baudrate Wizard")

 If (wResult = vbNo) Then
 Form1.Caption = ""

 Form1.MousePointer = 0
 ShowTCPIPProgress = 1
Else

 Form1.MousePointer = vbHourglass
End If

Case TCPIP_END_SEQ
 Form1.Caption = ""

Form1.MousePointer = 0
Case Else

 Form1.Caption =
"Baudrate Wizard: Try to connect @ " + Str(xwProgress) + " Baud"

End Select
DoEvents

End Function

 PS40_LINK: PLC – PC communication Page 19 of 24

SSppeecciiffyy ccoonnnneeccttiioonn ppaarraammeetteerr
The following PS40_LINK functions use the „xpComDevice“ string parameter (which is always
the first function parameter) to determine the requested connection type:

• writeDataToPLC, readDataFromPLC,
• writeDataToPLCex, readDataFromPLCex,
• openComDevice

The parameter string itself is divided into four fields, which are separated by colons “:” or a
semicolon “;”. Please take a look on the following example code snippet, to see how the
parameter string matches the different fields:

wResult = openComDevice("CoBox:COM1:19200;130.1.14.189", wHandle)

 : : ;

The next table describes in detail the meaning and possible values for the parameter fields.

Field name Description Example
DeviceName This field names the Ethernet/Serial gateway device. Actual the

PS40_Link support the „CoBox“ device.
Default: „CoBox“

CoBox

SerialDevice This field selects a specific serial device either locally in your PC or
remotely if you specify a remote Ethernet/Serial gateway.
Default: COM1

COM1

Baudrate This parameter adjust the baudrate between the PC or a remote
Ethernet/Serial gateway and the PLC. If you use a modem
connection make sure the PLC is set to the appropriate
baudrate (the baudrate could not be set automatically in this
case)! The table below shows the supported baudrates:
 2400 4800 9600 19200 38400 57600
PS3/PS306/PS316 ! --- --- " --- --- ---
PS4-111/141/151/201/271 ! --- --- " --- --- ---
PS4-341-MM1 PRG port # " " " " " "
PS4-341-MM1 with SBI $ " " " " --- ---
 In Transparent mode
PS416-CPU-x00 PRG port # " " " " " "
PS416-CPU-x00 with SBI $ " " " " --- ---
 In Transparent mode
PS416-COM-200 $ " " " " --- ---

Please note the following remarks for the different PS40_LINK
connections to a PLC:
! For this PLCs the baudrate to fixed to 9600 and therefore needs
not to be configured anywhere in the PLC.
Your selected baudrate is automatically set in the PLC. No further
action at the PLC is necessary from your side.
$ Your chosen baudrate for the selected device (e.g. the SBI port)
must be additionally configured with the S40 Topology Configurator
and downloaded with the PLC program. Make sure to call the
function block “SUCOM_A” in your program to establish a successful
connection.
Default: 9600

19200

Phonenr. This parameter specify two details:
1. It defines that you want to use a modem connection over the

selected „SerialDevice“.
2. If defines the phone number of the remote modem which in turn

is connected to the PLC.

049 228 602 4711

DeviceName SerialDevice Baudrate Phonenr or
TCP/IP Address or
HostName

 PS40_LINK: PLC – PC communication Page 20 of 24

Note: In this case the field „DeviceName“ has no meaning.

Default: N/A.
TCP/IP
address

This parameter specify two details:
1. It defines that you want to use a TCP/IP connection.
2. If defines the TCP/IP address of the remote Ethernet/Serial

gateway which in turn is connected to the PLC.
Note: In this case the field „SerialDevice“ specify the serial device in
the gateway and not in your PC.

Default: N/A.

192.168.1.75

Hostname This parameter is a symbolic representation for an TCP/IP address,
which make it easier (for humans) to remember addresses of
devices. The mapping (host) name to TCP/IP address is done in a
file called „HOSTS“ which is located in the Windows directory. The
file can be change with a standard editor like Wordpad.
The parameter specify two things:
1. It defines that you want to use a TCP/IP connection.
2. If defines the TCP/IP address of the remote Ethernet/Serial

gateway which in turn is connected to the PLC.
Note: In this case the field „SerialDevice“ specify the serial device in
the gateway and not in your PC.

Default: N/A.

PistonValve

 PS40_LINK: PLC – PC communication Page 21 of 24

As you can see, it is possible to select a direct or a remote connection between the PC and
the PLC. If you choose a remote connection, you have the choice between a Modem or a
TCP/IP connection type. You can have up to 255 connections simultaneously. Please keep to
the following rules to select and specify your needed connection type (the light grey fields are
not necessary for the corresponding connection type)20.

Direct connection
wResult = openComDevice("COM2:19200;", wHandle)

 : : ;

Remote Modem Connection
wResult = openComDevice("COM2:38400; 049 228 602 4711", wHandle)

 : : ;

NOTE: The PLC serial port must be set manually to the 38400 baudrate, used in this example.

Remote TCP/IP Connection
wResult = openComDevice("CoBox:COM1:38400; 192.168.1.75", wHandle)

 : : ;

NOTE: Both, the PLC port and the CoBox gateway will be set automatically to the given baudrate
(38400 in this example). If no baudrate is specified, 9600 baud is assumed for the CoBox and the PLC
port and the automatic baudrate setting sequence will be not activated. Make sure that the PLC port is
initially set to a baudrate which is supported by the gateway, otherwise the automatic setting sequence
doesn't work. For example, the CoBox support up to 38400 Baud, but if the PLC is set to 57600 no
connection could be established. In this case the PLC serial port baudrate must be set manually.

For more details concerning the data exchange functions (writeDataToPLC,
readDataFromPLC, writeDataToPLCex, readDataFromPLCex, openComDevice), please refer
to the appropriate chapters in this documentation. After the functions returns, the connection
with the PLC (direct or remote) is established or in the case of an error you get an error code.
The next table show the different error code ranges depending on the selected connection
type.

Error Codes Description
 0 Connection established and data exchange function returns successfully.
 1 ... 99 General PS40_LINK error, e.g. a parameter fault, wrong COM device ...
300 ... 399 Error codes corresponding to Modem errors, e.g. the remote modem is busy.
400 ... 499 Error codes related to TCP/IP errors, e.g. the TCP/IP network is down.

20 Please note, that the colon „:“ and the semicolon „;“ are necessary to separate the different fields. Do
not use additional tabs or space characters in this context!

DeviceName SerialDevice Baudrate Phonenr or
TCP/IP Address or
HostName

DeviceName SerialDevice Baudrate Phonenr

DeviceName SerialDevice Baudrate TCP/IP Address or
HostName

 PS40_LINK: PLC – PC communication Page 22 of 24

TTeecchhnniiccaall ddaattaa
The following tables describe some performance parameters divided into data reading, data
writing with PS40_LINK version 2.x and 3.x at 9600 and 57600 Baud.21 Please note as a
general rule: For fastest update rates use small frame sizes as possible (at least smaller than
64 bytes) and for best data throughput use large frame sizes as possible (1024 Byte frames
are a good compromise between a handy size and a good throughput).

Reading data

This table shows how many calls per second with readDataFromPLCex with a given frame
size you can expect. Frame size means the value for xwNoOfElements with data type set to
“Byte”. For example you can see, it is possible to update the PC eight times per second with
new PLC data if you transfer 64 Bytes within each call to readDataFromPLCex, which in turn
results in a total of approximately 512 bytes per second (with V3.0 and 9600 Baud).

PS40_LINK version
Frame size in bytes

PS40_LINK V2.x PS40_LINK V3.0
9600 Baud

PS40_LINK V3.0
57600 Baud

1 16 16 39
64 8 8 25
128 4 5 15
256 2 3 8

The next table shows you the performance ratio in Bytes/sec for bulk data transfers. For
example you can see, it is possible to transfer up to 673 bytes per second if you set the frame
size to 1024 bytes. The values in parenthesis give you the time needed to transfer 64KB bulk
data.

PS40_LINK version
Frame size in bytes

PS40_LINK V2.x PS40_LINK V3.0
9600 Baud

PS40_LINK V3.0
57600 Baud

64 479 (137 sec) 479 (137 sec) 1604 (41 sec)
1024 479 (137 sec) 673 (97 sec) 2134 (31 sec)
16384 479 (137 sec) 691 (95 sec) 2358 (28 sec)

Please note that the actual PS40_LINK version 3.0 give you a great performance boost for
reading data if you use a frame size greater than 64 bytes at 9600 Baud: The actual version is
more than 40 % faster than its predecessor in this cases and about 490% faster if you use
57600 Baud.

Writing data

This table shows how many calls per second with writeDataToPLCex with a given frame size
you can expect. Frame size means the value for xwNoOfElements with data type set to
“Byte”. For example you can see, it is possible to update the PLC seven times per second
with new data if you transfer 64 Bytes within each call to writeDataToPLCex.

PS40_LINK version
Frame size in bytes

PS40_LINK V2.x PS40_LINK V3.0
9600 Baud

PS40_LINK V3.0
57600 Baud

1 14 14 22
64 7 7 20
128 3 4 11
256 2 2 6

21 The values are determined with a 400MHz Pentium II Windows 98 computer connected to a PS4-151-MM1 Moeller
PLC with a 10ms cycle time (PS4-341-MM1 for 57600 Baud). Please note: The values may vary with the PLC cycle
time.

 PS40_LINK: PLC – PC communication Page 23 of 24

DDaattaa sshheeeett

Max. connection count 254

Max. direct serial connections 9 (COM1 ... COM9)

Baudrate supported 2400, 4800, 9600, 19200, 38400, 57600 (depends on PLC

and connection type)

Automatic baudrate setting PS4-341, PS416: for direct and TCP/IP connections

Max. bytes per functions call 16KB (depends on size of marker field)

Max. throughput (approximate) 2 KB/sec (depends on PC, PLC and connection type)

Max. calls per second 39 calls/sec (depends on PC, PLC and connection type)

Multi-threaded application support Yes (Simultaneous open connections)

Moeller PLCs supported PS4-141/151/201/271, PS4-341, PS416-200/300/400,

PS4-101/111, PS3, PS306, PS316

Windows version supported MS-Windows 95, 98, NT 4.0

 PS40_LINK: PLC – PC communication Page 24 of 24

EErrrroorr ccooddeess
These are the result and error codes for the PS40_LINK DLL functions:

Code # Description

0 SUCOM_OK
The function call was complete and successful

1 SUCOM_COMM_ERROR
During the reception of a PLC data package errors like parity, overrun, etc. have occurred.
Please check the settings of the PLC interface (S40) and the cable.

2 SUCOM_COM_PORT_NOT_FOUND
The interface specified in the xpComDevice parameter does not exist or is faulty.

3 SUCOM_ERROR_OPEN_COM_PORT
Internal PC interface error. The specified interface has been found, but cannot be
initialized with the necessary parameters.

4 SUCOM_COM_PORT_ALREADY_OPEN
The interface specified with the parameter xpComDevice is being used by another
Windows application.

5 SUCOM_PARAMETER_ERROR
At least one of the specified parameters is not valid for the specified PLC type.

6 SUCOM_ERROR_ON_WRITING
A general write error has occurred. Possible reasons are
- The PLC is turned off
- The PLC is not connected
- The cable is faulty
- The interface is faulty
- Handle (xwPortID) is faulty

7 SUCOM_ERROR_ON_READING
A general PLC read error has occurred. Possible reasons are
- the PLC is turned off
- the PLC is not connected
- the cable is faulty
- the interface is faulty

8 SUCOM_WRONG_ANSWER
Error reading PLC. Possibly the connected device is not a Moeller PLC.

9 SUCOM_READING_TIMEOUT
Timeout reading the PLC. Possible reasons are:
- bad or no PLC connection
- wrong PLC interface parameters (PS416 CPU switch setting)
- wrong or faulty cable
- PC interface faulty (device conflicts)

10 SUCOM_WRITING_TIMEOUT
A timeout during a data send operation has occurred. Possible reasons are:
- faulty PC COM interface
- COM port device conflicts

11 SUCOM_ERROR_INIT_TIMEOUT_VALUES
Internal error during initialization process for the PC COM port. The specified COM port
has been found but cannot be initialized with the necessary parameters.

12 SUCOM_TOO_MANY_MARKER
The PC is requesting marker data outside the PLC marker range

13 SUCOM_NO_EXT_DLL_FOUND
The necessary PS40_LINK extension couldn’t be found.

14 SUCOM_INVALID_DLL
A extension DLL is invalid (doesn’t contain Function entrypoint). Wrong DLL with the
same extension name.

15 SUCOM_BREAK_BY_USER
An operation like the automatic baudrate setting over TCP/IP connections was canceled
by the user through a callback function.

	Table of contents
	Introduction	3
	Function overview
	Quick start
	Reference of the PS40_LINK functions
	getSucomVersion
	getVersion
	writeDataToPLC
	readDataFromPLC
	writeDataToPLCex
	readDataFromPLCex
	
	Handling issues for BOOL and VBBOOL datatypes:

	setPLCType
	openComDevice
	closeComDevice
	setSucomOptions
	
	
	Public Function ShowModemProgress(ByVal xwProgress As Long) As Long

	Specify connection parameter
	
	
	
	
	
	
	
	Example

	Direct connection
	Remote Modem Connection
	Remote TCP/IP Connection

	Technical data
	
	
	Reading data
	
	PS40_LINK version

	Writing data

	Data sheet
	Error codes
	
	
	SUCOM_OK
	SUCOM_COMM_ERROR
	SUCOM_COM_PORT_NOT_FOUND
	SUCOM_ERROR_OPEN_COM_PORT
	SUCOM_COM_PORT_ALREADY_OPEN
	SUCOM_PARAMETER_ERROR
	SUCOM_ERROR_ON_WRITING
	SUCOM_ERROR_ON_READING
	SUCOM_WRONG_ANSWER
	SUCOM_READING_TIMEOUT
	SUCOM_WRITING_TIMEOUT
	SUCOM_ERROR_INIT_TIMEOUT_VALUES
	SUCOM_TOO_MANY_MARKER
	SUCOM_NO_EXT_DLL_FOUND
	SUCOM_BREAK_BY_USER

